{"title":"木质纤维素质生物质快速热解形成的生物油的色谱分析","authors":"J. Grams","doi":"10.1515/revac-2020-0108","DOIUrl":null,"url":null,"abstract":"Abstract Fast pyrolysis of lignocellulosic biomass is one of the most promising methods of the production of renewable fuels. However, an optimization of the conditions of bio-oil production is not possible without comprehensive analysis of the composition of formed products. There are several methods for the determination of distribution of products formed during thermal decomposition of biomass with chromatography being the most versatile among them. Although, due to the complex structure of bio-oil (presence of hundreds chemical compounds with different chemical character), an interpretation of the obtained chromatograms is not an easy task. Therefore, the aim of this work is to present an application of different chromatographic methods to the analysis of the composition of the mixture of products formed in high temperature decomposition of lignocellulosic feedstock. It includes pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), two dimensional gas (GC x GC) or liquid chromatography (LC x LC) and initial fractionation of bio-oil components. Moreover, the problems connected with the analysis of bio-oils formed with the use of various fast pyrolysis reactors and capabilities of multivariate analysis are discussed.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"43 1","pages":"65 - 77"},"PeriodicalIF":3.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Chromatographic analysis of bio-oil formed in fast pyrolysis of lignocellulosic biomass\",\"authors\":\"J. Grams\",\"doi\":\"10.1515/revac-2020-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Fast pyrolysis of lignocellulosic biomass is one of the most promising methods of the production of renewable fuels. However, an optimization of the conditions of bio-oil production is not possible without comprehensive analysis of the composition of formed products. There are several methods for the determination of distribution of products formed during thermal decomposition of biomass with chromatography being the most versatile among them. Although, due to the complex structure of bio-oil (presence of hundreds chemical compounds with different chemical character), an interpretation of the obtained chromatograms is not an easy task. Therefore, the aim of this work is to present an application of different chromatographic methods to the analysis of the composition of the mixture of products formed in high temperature decomposition of lignocellulosic feedstock. It includes pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), two dimensional gas (GC x GC) or liquid chromatography (LC x LC) and initial fractionation of bio-oil components. Moreover, the problems connected with the analysis of bio-oils formed with the use of various fast pyrolysis reactors and capabilities of multivariate analysis are discussed.\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":\"43 1\",\"pages\":\"65 - 77\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2020-0108\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2020-0108","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 9
摘要
木质纤维素生物质的快速热解是生产可再生燃料最有前途的方法之一。然而,如果没有对形成产物的成分进行全面分析,就不可能优化生物油的生产条件。测定生物质热分解过程中形成的产物分布的方法有几种,其中色谱法是最通用的。虽然,由于生物油的复杂结构(存在数百种具有不同化学性质的化合物),获得的色谱图的解释不是一件容易的事情。因此,这项工作的目的是介绍不同色谱方法的应用,以分析高温分解木质纤维素原料形成的混合物的组成。它包括热解-气相色谱/质谱(Py-GC/MS),二维气相色谱(GC x GC)或液相色谱(LC x LC)和生物油成分的初始分馏。此外,还讨论了使用各种快速热解反应器对生物油进行分析所涉及的问题以及多元分析的能力。
Chromatographic analysis of bio-oil formed in fast pyrolysis of lignocellulosic biomass
Abstract Fast pyrolysis of lignocellulosic biomass is one of the most promising methods of the production of renewable fuels. However, an optimization of the conditions of bio-oil production is not possible without comprehensive analysis of the composition of formed products. There are several methods for the determination of distribution of products formed during thermal decomposition of biomass with chromatography being the most versatile among them. Although, due to the complex structure of bio-oil (presence of hundreds chemical compounds with different chemical character), an interpretation of the obtained chromatograms is not an easy task. Therefore, the aim of this work is to present an application of different chromatographic methods to the analysis of the composition of the mixture of products formed in high temperature decomposition of lignocellulosic feedstock. It includes pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), two dimensional gas (GC x GC) or liquid chromatography (LC x LC) and initial fractionation of bio-oil components. Moreover, the problems connected with the analysis of bio-oils formed with the use of various fast pyrolysis reactors and capabilities of multivariate analysis are discussed.
期刊介绍:
Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.