{"title":"前真空等离子体电子源研究进展","authors":"E. Oks","doi":"10.1109/PLASMA.2013.6633472","DOIUrl":null,"url":null,"abstract":"Summary form only given. This paper presents a review of recent development of physical and performances of co called “fore-vacuum plasma electron sources” operated at pressure range 10-100 Pa. A number of unique parameters of the e-beam were obtained, such as electron dc energy (to 20 keV), dc beam current (up 0.5 A), pulsed current (up to 100A, 1 ms) and total e-beam power (up to 5 kW). For electron beam generation at these relatively high pressures, the following special features are important: high probability of electrical breakdown within the accelerating gap, a strong influence of back-streaming ions both the emission electrode and the emitting plasma, generation of secondary plasma in the beam propagation region, and intense beam-plasma interactions that lead in turn to broadening of the beam energy spectrum and beam defocusing. The descriptions of several fore-pump plasma electron sources, its performances and parameters are also presented. Main application area is electron beam treatment of non-conducting high temperature ceramics.","PeriodicalId":6313,"journal":{"name":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","volume":"75 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent development of the fore-vacuum plasma electron sources\",\"authors\":\"E. Oks\",\"doi\":\"10.1109/PLASMA.2013.6633472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. This paper presents a review of recent development of physical and performances of co called “fore-vacuum plasma electron sources” operated at pressure range 10-100 Pa. A number of unique parameters of the e-beam were obtained, such as electron dc energy (to 20 keV), dc beam current (up 0.5 A), pulsed current (up to 100A, 1 ms) and total e-beam power (up to 5 kW). For electron beam generation at these relatively high pressures, the following special features are important: high probability of electrical breakdown within the accelerating gap, a strong influence of back-streaming ions both the emission electrode and the emitting plasma, generation of secondary plasma in the beam propagation region, and intense beam-plasma interactions that lead in turn to broadening of the beam energy spectrum and beam defocusing. The descriptions of several fore-pump plasma electron sources, its performances and parameters are also presented. Main application area is electron beam treatment of non-conducting high temperature ceramics.\",\"PeriodicalId\":6313,\"journal\":{\"name\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"75 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2013.6633472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Abstracts IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2013.6633472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent development of the fore-vacuum plasma electron sources
Summary form only given. This paper presents a review of recent development of physical and performances of co called “fore-vacuum plasma electron sources” operated at pressure range 10-100 Pa. A number of unique parameters of the e-beam were obtained, such as electron dc energy (to 20 keV), dc beam current (up 0.5 A), pulsed current (up to 100A, 1 ms) and total e-beam power (up to 5 kW). For electron beam generation at these relatively high pressures, the following special features are important: high probability of electrical breakdown within the accelerating gap, a strong influence of back-streaming ions both the emission electrode and the emitting plasma, generation of secondary plasma in the beam propagation region, and intense beam-plasma interactions that lead in turn to broadening of the beam energy spectrum and beam defocusing. The descriptions of several fore-pump plasma electron sources, its performances and parameters are also presented. Main application area is electron beam treatment of non-conducting high temperature ceramics.