A. Bose, Debaleen Biswas, S. Hishiki, Sumito Ouchi, K. Kitahara, K. Kawamura, A. Wakejima
{"title":"厚氮化层对GaN-on-3C-SiC/低电阻率Si传输损耗的影响","authors":"A. Bose, Debaleen Biswas, S. Hishiki, Sumito Ouchi, K. Kitahara, K. Kawamura, A. Wakejima","doi":"10.1587/elex.19.20210563","DOIUrl":null,"url":null,"abstract":"Wereporttheeffectofathicknitridelayerontransmissionlossin GaN-on-3C-SiC/low resistivity Si (LR-Si). Microstrip lines of finite length and width with ground pads were fabricated on three GaN-on-3C-SiC/LR-Si epitaxial structures with varying nitride layer thicknesses of 3.2, 5.3, and 8.0 𝜇 m. The loss performance of microstrip lines on different substrates was evaluated in the frequency range of 0.1 to 9 GHz. The sample with 8.0 𝜇 m thick nitride layer showed a minimal loss of 0.3 dB/mm at 9 GHz compared to the other samples. The evaluated data from electromagnetic (EM) simulation also confirmed a decreasing trend of loss with increasing nitride layer thickness. Temperature dependent loss evaluation also verified the above fact.","PeriodicalId":13437,"journal":{"name":"IEICE Electron. Express","volume":"63 1","pages":"20210563"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence of a thick nitride layer on transmission loss in GaN-on-3C-SiC/low resistivity Si\",\"authors\":\"A. Bose, Debaleen Biswas, S. Hishiki, Sumito Ouchi, K. Kitahara, K. Kawamura, A. Wakejima\",\"doi\":\"10.1587/elex.19.20210563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wereporttheeffectofathicknitridelayerontransmissionlossin GaN-on-3C-SiC/low resistivity Si (LR-Si). Microstrip lines of finite length and width with ground pads were fabricated on three GaN-on-3C-SiC/LR-Si epitaxial structures with varying nitride layer thicknesses of 3.2, 5.3, and 8.0 𝜇 m. The loss performance of microstrip lines on different substrates was evaluated in the frequency range of 0.1 to 9 GHz. The sample with 8.0 𝜇 m thick nitride layer showed a minimal loss of 0.3 dB/mm at 9 GHz compared to the other samples. The evaluated data from electromagnetic (EM) simulation also confirmed a decreasing trend of loss with increasing nitride layer thickness. Temperature dependent loss evaluation also verified the above fact.\",\"PeriodicalId\":13437,\"journal\":{\"name\":\"IEICE Electron. Express\",\"volume\":\"63 1\",\"pages\":\"20210563\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEICE Electron. Express\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/elex.19.20210563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Electron. Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.19.20210563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Influence of a thick nitride layer on transmission loss in GaN-on-3C-SiC/low resistivity Si
Wereporttheeffectofathicknitridelayerontransmissionlossin GaN-on-3C-SiC/low resistivity Si (LR-Si). Microstrip lines of finite length and width with ground pads were fabricated on three GaN-on-3C-SiC/LR-Si epitaxial structures with varying nitride layer thicknesses of 3.2, 5.3, and 8.0 𝜇 m. The loss performance of microstrip lines on different substrates was evaluated in the frequency range of 0.1 to 9 GHz. The sample with 8.0 𝜇 m thick nitride layer showed a minimal loss of 0.3 dB/mm at 9 GHz compared to the other samples. The evaluated data from electromagnetic (EM) simulation also confirmed a decreasing trend of loss with increasing nitride layer thickness. Temperature dependent loss evaluation also verified the above fact.