{"title":"通过Weingarten微积分得到的有限自由卷积","authors":"J. Campbell, Z. Yin","doi":"10.1142/S2010326321500386","DOIUrl":null,"url":null,"abstract":"We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.","PeriodicalId":54329,"journal":{"name":"Random Matrices-Theory and Applications","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Finite free convolutions via Weingarten calculus\",\"authors\":\"J. Campbell, Z. Yin\",\"doi\":\"10.1142/S2010326321500386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.\",\"PeriodicalId\":54329,\"journal\":{\"name\":\"Random Matrices-Theory and Applications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Random Matrices-Theory and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S2010326321500386\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Matrices-Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S2010326321500386","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
We consider the three finite free convolutions for polynomials studied in a recent paper by Marcus, Spielman and Srivastava. Each can be described either by direct explicit formulae or in terms of operations on randomly rotated matrices. We present an alternate approach to the equivalence between these descriptions, based on combinatorial Weingarten methods for integration over the unitary and orthogonal groups. A key aspect of our approach is to identify a certain quadrature property, which is satisfied by some important series of subgroups of the unitary groups (including the groups of unitary, orthogonal, and signed permutation matrices), and which yields the desired convolution formulae.
期刊介绍:
Random Matrix Theory (RMT) has a long and rich history and has, especially in recent years, shown to have important applications in many diverse areas of mathematics, science, and engineering. The scope of RMT and its applications include the areas of classical analysis, probability theory, statistical analysis of big data, as well as connections to graph theory, number theory, representation theory, and many areas of mathematical physics.
Applications of Random Matrix Theory continue to present themselves and new applications are welcome in this journal. Some examples are orthogonal polynomial theory, free probability, integrable systems, growth models, wireless communications, signal processing, numerical computing, complex networks, economics, statistical mechanics, and quantum theory.
Special issues devoted to single topic of current interest will also be considered and published in this journal.