揭示大型在线创作者社区的非正式学习轨迹

Seungwon Yang, C. Domeniconi, Matt Revelle, Mack Sweeney, Ben U. Gelman, Chris Beckley, A. Johri
{"title":"揭示大型在线创作者社区的非正式学习轨迹","authors":"Seungwon Yang, C. Domeniconi, Matt Revelle, Mack Sweeney, Ben U. Gelman, Chris Beckley, A. Johri","doi":"10.1145/2724660.2724674","DOIUrl":null,"url":null,"abstract":"We analyzed informal learning in Scratch Online -- an online community with over 4.3 million users and 6.7 million user-generated content. Users develop projects, which are graphical interfaces involving manipulation of programming blocks. We investigated two fundamental questions: how can we model informal learning, and what patterns of informal learning emerge. We proceeded in two phases. First, we modeled learning as a trajectory of cumulative programming block usage by long-term users who created at least 50 projects. Second, we applied K-means++ clustering to uncover patterns of learning and corresponding subpopulations. We found four groups of users manifesting four different patterns of learning, ranging from the smallest to the largest improvement. At one end of the spectrum, users learned more and in a faster manner. At the opposite end, users did not show much learning, even after creating dozens of projects. The modeling and clustering of trajectory patterns that enabled us to quantitatively analyze informal learning may be applicable to other similar communities. The results can also support administrators of online communities in implementing customized interventions for specific subpopulations.","PeriodicalId":20664,"journal":{"name":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","volume":"129 11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Uncovering Trajectories of Informal Learning in Large Online Communities of Creators\",\"authors\":\"Seungwon Yang, C. Domeniconi, Matt Revelle, Mack Sweeney, Ben U. Gelman, Chris Beckley, A. Johri\",\"doi\":\"10.1145/2724660.2724674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyzed informal learning in Scratch Online -- an online community with over 4.3 million users and 6.7 million user-generated content. Users develop projects, which are graphical interfaces involving manipulation of programming blocks. We investigated two fundamental questions: how can we model informal learning, and what patterns of informal learning emerge. We proceeded in two phases. First, we modeled learning as a trajectory of cumulative programming block usage by long-term users who created at least 50 projects. Second, we applied K-means++ clustering to uncover patterns of learning and corresponding subpopulations. We found four groups of users manifesting four different patterns of learning, ranging from the smallest to the largest improvement. At one end of the spectrum, users learned more and in a faster manner. At the opposite end, users did not show much learning, even after creating dozens of projects. The modeling and clustering of trajectory patterns that enabled us to quantitatively analyze informal learning may be applicable to other similar communities. The results can also support administrators of online communities in implementing customized interventions for specific subpopulations.\",\"PeriodicalId\":20664,\"journal\":{\"name\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"volume\":\"129 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second (2015) ACM Conference on Learning @ Scale\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2724660.2724674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second (2015) ACM Conference on Learning @ Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2724660.2724674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

我们分析了Scratch Online(一个拥有430万用户和670万用户生成内容的在线社区)中的非正式学习。用户开发项目,这些项目是涉及编程块操作的图形界面。我们研究了两个基本问题:我们如何为非正式学习建模,以及非正式学习出现了什么模式。我们分两个阶段进行。首先,我们将学习建模为创建至少50个项目的长期用户累积编程块使用的轨迹。其次,我们应用k -means++聚类来揭示学习模式和相应的亚群。我们发现四组用户表现出四种不同的学习模式,从最小的到最大的改进。一方面,用户以更快的方式学到了更多东西。另一方面,即使创建了几十个项目,用户也没有表现出多少学习。轨迹模式的建模和聚类使我们能够定量地分析非正式学习,这可能适用于其他类似的社区。研究结果还可以支持在线社区管理员针对特定亚群实施定制干预措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Uncovering Trajectories of Informal Learning in Large Online Communities of Creators
We analyzed informal learning in Scratch Online -- an online community with over 4.3 million users and 6.7 million user-generated content. Users develop projects, which are graphical interfaces involving manipulation of programming blocks. We investigated two fundamental questions: how can we model informal learning, and what patterns of informal learning emerge. We proceeded in two phases. First, we modeled learning as a trajectory of cumulative programming block usage by long-term users who created at least 50 projects. Second, we applied K-means++ clustering to uncover patterns of learning and corresponding subpopulations. We found four groups of users manifesting four different patterns of learning, ranging from the smallest to the largest improvement. At one end of the spectrum, users learned more and in a faster manner. At the opposite end, users did not show much learning, even after creating dozens of projects. The modeling and clustering of trajectory patterns that enabled us to quantitatively analyze informal learning may be applicable to other similar communities. The results can also support administrators of online communities in implementing customized interventions for specific subpopulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning is Not a Spectator Sport: Doing is Better than Watching for Learning from a MOOC Learnersourcing of Complex Assessments All It Takes Is One: Evidence for a Strategy for Seeding Large Scale Peer Learning Interactions Designing MOOCs as Interactive Places for Collaborative Learning Who You Are or What You Do: Comparing the Predictive Power of Demographics vs. Activity Patterns in Massive Open Online Courses (MOOCs)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1