LICCA:跨语言克隆检测工具

Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, Z. Budimac
{"title":"LICCA:跨语言克隆检测工具","authors":"Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, Z. Budimac","doi":"10.1109/SANER.2018.8330250","DOIUrl":null,"url":null,"abstract":"Code clones mostly have been proven harmful for the development and maintenance of software systems, leading to code deterioration and an increase in bugs as the system evolves. Modern software systems are composed of several components, incorporating multiple technologies in their development. In such systems, it is common to replicate (parts of) functionality across the different components, potentially in a different programming language. Effect of these duplicates is more acute, as their identification becomes more challenging. This paper presents LICCA, a tool for the identification of duplicate code fragments across multiple languages. LICCA is integrated with the SSQSA platform and relies on its high-level representation of code in which it is possible to extract syntactic and semantic characteristics of code fragments positing full cross-language clone detection. LICCA is on a technology development level. We demonstrate its potential by adopting a set of cloning scenarios, extended and rewritten in five characteristic languages: Java, C, JavaScript, Modula-2 and Scheme.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"15 24 1","pages":"512-516"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"LICCA: A tool for cross-language clone detection\",\"authors\":\"Tijana Vislavski, Gordana Rakic, Nicolás Cardozo, Z. Budimac\",\"doi\":\"10.1109/SANER.2018.8330250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Code clones mostly have been proven harmful for the development and maintenance of software systems, leading to code deterioration and an increase in bugs as the system evolves. Modern software systems are composed of several components, incorporating multiple technologies in their development. In such systems, it is common to replicate (parts of) functionality across the different components, potentially in a different programming language. Effect of these duplicates is more acute, as their identification becomes more challenging. This paper presents LICCA, a tool for the identification of duplicate code fragments across multiple languages. LICCA is integrated with the SSQSA platform and relies on its high-level representation of code in which it is possible to extract syntactic and semantic characteristics of code fragments positing full cross-language clone detection. LICCA is on a technology development level. We demonstrate its potential by adopting a set of cloning scenarios, extended and rewritten in five characteristic languages: Java, C, JavaScript, Modula-2 and Scheme.\",\"PeriodicalId\":6602,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"15 24 1\",\"pages\":\"512-516\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2018.8330250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

事实证明,代码克隆对软件系统的开发和维护是有害的,随着系统的发展,它会导致代码的退化和bug的增加。现代软件系统由几个组件组成,在其开发中结合了多种技术。在这样的系统中,跨不同组件(可能使用不同的编程语言)复制(部分)功能是很常见的。这些重复的影响更严重,因为它们的识别变得更具挑战性。本文介绍了LICCA,一种跨多种语言识别重复代码片段的工具。LICCA与SSQSA平台集成,并依赖于其代码的高级表示,其中可以提取代码片段的语法和语义特征,从而实现完整的跨语言克隆检测。LICCA处于技术发展水平。我们通过采用一组克隆场景来展示其潜力,这些场景使用五种特色语言进行扩展和重写:Java、C、JavaScript、Modula-2和Scheme。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LICCA: A tool for cross-language clone detection
Code clones mostly have been proven harmful for the development and maintenance of software systems, leading to code deterioration and an increase in bugs as the system evolves. Modern software systems are composed of several components, incorporating multiple technologies in their development. In such systems, it is common to replicate (parts of) functionality across the different components, potentially in a different programming language. Effect of these duplicates is more acute, as their identification becomes more challenging. This paper presents LICCA, a tool for the identification of duplicate code fragments across multiple languages. LICCA is integrated with the SSQSA platform and relies on its high-level representation of code in which it is possible to extract syntactic and semantic characteristics of code fragments positing full cross-language clone detection. LICCA is on a technology development level. We demonstrate its potential by adopting a set of cloning scenarios, extended and rewritten in five characteristic languages: Java, C, JavaScript, Modula-2 and Scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring the integration of user feedback in automated testing of Android applications The Statechart Workbench: Enabling scalable software event log analysis using process mining Detecting code smells using machine learning techniques: Are we there yet? Classifying stack overflow posts on API issues Re-evaluating method-level bug prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1