{"title":"恒定观测间隔时间的复合泊松模型中的Gerber-Shiu分析","authors":"Jiayi Xie, Wenguang Yu, Zhimin Zhang, Zhenyu Cui","doi":"10.1017/S0269964822000092","DOIUrl":null,"url":null,"abstract":"In this paper, the classical compound Poisson model under periodic observation is studied. Different from the random observation assumption widely used in the literature, we suppose that the inter-observation time is a constant. In this model, both the finite-time and infinite-time Gerber-Shiu functions are studied via the Laguerre series expansion method. We show that the expansion coefficients can be recursively determined and also analyze the approximation errors in detail. Numerical results for several claim size density functions are given to demonstrate effectiveness of our method, and the effect of some parameters is also studied.","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"17 1","pages":"324 - 356"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gerber-Shiu analysis in the compound Poisson model with constant inter-observation times\",\"authors\":\"Jiayi Xie, Wenguang Yu, Zhimin Zhang, Zhenyu Cui\",\"doi\":\"10.1017/S0269964822000092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the classical compound Poisson model under periodic observation is studied. Different from the random observation assumption widely used in the literature, we suppose that the inter-observation time is a constant. In this model, both the finite-time and infinite-time Gerber-Shiu functions are studied via the Laguerre series expansion method. We show that the expansion coefficients can be recursively determined and also analyze the approximation errors in detail. Numerical results for several claim size density functions are given to demonstrate effectiveness of our method, and the effect of some parameters is also studied.\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"17 1\",\"pages\":\"324 - 356\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0269964822000092\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0269964822000092","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Gerber-Shiu analysis in the compound Poisson model with constant inter-observation times
In this paper, the classical compound Poisson model under periodic observation is studied. Different from the random observation assumption widely used in the literature, we suppose that the inter-observation time is a constant. In this model, both the finite-time and infinite-time Gerber-Shiu functions are studied via the Laguerre series expansion method. We show that the expansion coefficients can be recursively determined and also analyze the approximation errors in detail. Numerical results for several claim size density functions are given to demonstrate effectiveness of our method, and the effect of some parameters is also studied.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.