在用户指定的时空域中按需聚合网格数据

Joel E. Tosado, Gheorghi Guzun, G. Canahuate, R. Mantilla
{"title":"在用户指定的时空域中按需聚合网格数据","authors":"Joel E. Tosado, Gheorghi Guzun, G. Canahuate, R. Mantilla","doi":"10.1145/2996913.2996944","DOIUrl":null,"url":null,"abstract":"The advent of satellite imagery, remote sensing products, and global scale numerical climate models over the last two decades has created an explosion of available gridded environmental data. These space-time explicit datasets are produced and distributed using different spatial and temporal resolutions. Current approaches for comparing two different products generally involve offline pre-computation of aggregations to a common spatio-temporal resolution. This limits the user's ability to interactively compare different data products or transform data products into the required input resolution for modeling. The goal of this work is to enable end users to perform on- the-fly transformations of gridded data products to different spatio-temporal resolutions to facilitate exploratory analyses and comparison of different data products. In this paper we propose a compressed columnar indexing and query processing to support online aggregation of gridded data over user-specified spatio-temporal domains. Our approach requires up to two orders of magnitude less space than more traditional indexing while maintaining competitive execution time for different aggregations in time and space.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On-demand aggregation of gridded data over user-specified spatio-temporal domains\",\"authors\":\"Joel E. Tosado, Gheorghi Guzun, G. Canahuate, R. Mantilla\",\"doi\":\"10.1145/2996913.2996944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of satellite imagery, remote sensing products, and global scale numerical climate models over the last two decades has created an explosion of available gridded environmental data. These space-time explicit datasets are produced and distributed using different spatial and temporal resolutions. Current approaches for comparing two different products generally involve offline pre-computation of aggregations to a common spatio-temporal resolution. This limits the user's ability to interactively compare different data products or transform data products into the required input resolution for modeling. The goal of this work is to enable end users to perform on- the-fly transformations of gridded data products to different spatio-temporal resolutions to facilitate exploratory analyses and comparison of different data products. In this paper we propose a compressed columnar indexing and query processing to support online aggregation of gridded data over user-specified spatio-temporal domains. Our approach requires up to two orders of magnitude less space than more traditional indexing while maintaining competitive execution time for different aggregations in time and space.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在过去的二十年里,卫星图像、遥感产品和全球尺度数值气候模式的出现创造了大量可用的网格化环境数据。这些时空显式数据集使用不同的空间和时间分辨率生成和分布。目前比较两种不同产品的方法通常涉及离线预计算聚合到一个共同的时空分辨率。这限制了用户交互比较不同数据产品或将数据产品转换为建模所需的输入分辨率的能力。这项工作的目标是使最终用户能够执行网格数据产品到不同时空分辨率的实时转换,以促进不同数据产品的探索性分析和比较。在本文中,我们提出了一种压缩柱状索引和查询处理,以支持在用户指定的时空域中网格数据的在线聚合。我们的方法需要的空间比传统索引少两个数量级,同时在时间和空间上保持不同聚合的竞争性执行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On-demand aggregation of gridded data over user-specified spatio-temporal domains
The advent of satellite imagery, remote sensing products, and global scale numerical climate models over the last two decades has created an explosion of available gridded environmental data. These space-time explicit datasets are produced and distributed using different spatial and temporal resolutions. Current approaches for comparing two different products generally involve offline pre-computation of aggregations to a common spatio-temporal resolution. This limits the user's ability to interactively compare different data products or transform data products into the required input resolution for modeling. The goal of this work is to enable end users to perform on- the-fly transformations of gridded data products to different spatio-temporal resolutions to facilitate exploratory analyses and comparison of different data products. In this paper we propose a compressed columnar indexing and query processing to support online aggregation of gridded data over user-specified spatio-temporal domains. Our approach requires up to two orders of magnitude less space than more traditional indexing while maintaining competitive execution time for different aggregations in time and space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1