使用基于典型性的协同过滤生成推荐

Sharandeep Kaur, R. Challa, Naveen Kumar, Shano Solanki, Shalini Sharma, Khushleen Kaur
{"title":"使用基于典型性的协同过滤生成推荐","authors":"Sharandeep Kaur, R. Challa, Naveen Kumar, Shano Solanki, Shalini Sharma, Khushleen Kaur","doi":"10.1109/CONFLUENCE.2017.7943151","DOIUrl":null,"url":null,"abstract":"The rapid growth of information availability on the Web related to movies, news, books, hotels, medicines, jobs etc. have increased the scope of information filtering techniques. Recommender System is software application that uses filtering techniques and algorithms to generate personalized preferences to support decision making of the users. Collaborative Filtering is one type of recommender system that finds neighbors of users on the basis of similar rated items by users or common users of items. It suffers from data sparsity and inaccuracy issues. In this paper, concept of typicality from cognitive psychology is used to find the neighbors of users on the basis of on their typicality degree in user groups. Typicality based Collaborative Filtering (TyCo) approach using K-means and Topic model based clustering is compared in terms of Mean Absolute Error (MAE).","PeriodicalId":6651,"journal":{"name":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","volume":"86 1","pages":"210-215"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Recommendation generation using typicality based collaborative filtering\",\"authors\":\"Sharandeep Kaur, R. Challa, Naveen Kumar, Shano Solanki, Shalini Sharma, Khushleen Kaur\",\"doi\":\"10.1109/CONFLUENCE.2017.7943151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of information availability on the Web related to movies, news, books, hotels, medicines, jobs etc. have increased the scope of information filtering techniques. Recommender System is software application that uses filtering techniques and algorithms to generate personalized preferences to support decision making of the users. Collaborative Filtering is one type of recommender system that finds neighbors of users on the basis of similar rated items by users or common users of items. It suffers from data sparsity and inaccuracy issues. In this paper, concept of typicality from cognitive psychology is used to find the neighbors of users on the basis of on their typicality degree in user groups. Typicality based Collaborative Filtering (TyCo) approach using K-means and Topic model based clustering is compared in terms of Mean Absolute Error (MAE).\",\"PeriodicalId\":6651,\"journal\":{\"name\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"volume\":\"86 1\",\"pages\":\"210-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2017.7943151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2017.7943151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

网络上的电影、新闻、书籍、酒店、药品、工作等信息的快速增长,增加了信息过滤技术的范围。推荐系统是一种软件应用程序,它使用过滤技术和算法来生成个性化的偏好,以支持用户的决策。协同过滤是一种推荐系统,它根据用户或物品的共同用户的相似评价来找到用户的邻居。它存在数据稀疏性和不准确性问题。本文利用认知心理学中的典型性概念,根据用户在用户群体中的典型性程度来寻找用户的邻居。在平均绝对误差(MAE)方面,比较了基于K-means的典型性协同过滤(TyCo)方法和基于主题模型的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recommendation generation using typicality based collaborative filtering
The rapid growth of information availability on the Web related to movies, news, books, hotels, medicines, jobs etc. have increased the scope of information filtering techniques. Recommender System is software application that uses filtering techniques and algorithms to generate personalized preferences to support decision making of the users. Collaborative Filtering is one type of recommender system that finds neighbors of users on the basis of similar rated items by users or common users of items. It suffers from data sparsity and inaccuracy issues. In this paper, concept of typicality from cognitive psychology is used to find the neighbors of users on the basis of on their typicality degree in user groups. Typicality based Collaborative Filtering (TyCo) approach using K-means and Topic model based clustering is compared in terms of Mean Absolute Error (MAE).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hydrological Modelling to Inform Forest Management: Moving Beyond Equivalent Clearcut Area Enhanced feature mining and classifier models to predict customer churn for an E-retailer Towards the practical design of performance-aware resilient wireless NoC architectures Adaptive virtual MIMO single cluster optimization in a small cell Software effort estimation using machine learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1