Himani Sharma, B. Bora, Shubham Sharma, R. Kumar, R. Jain
{"title":"基于天气参数的太阳能光伏发电可靠性蒙特卡罗模拟研究","authors":"Himani Sharma, B. Bora, Shubham Sharma, R. Kumar, R. Jain","doi":"10.9790/9622-0707053745","DOIUrl":null,"url":null,"abstract":"In this study the comprehensive reliability in terms of clearness index for power production of HIT, amorphous silicon & multi-crystalline silicon (m-cSi) technologies has been analyzed. The energy estimation of these three technologies is done based on regression, and deviation in the measured and estimated values is also reported. It has been found that for winter season, HIT technology module is the most reliable for overcast and partly cloudy conditions between the HIT, amorphous silicon &m-cSitechnologies. For summer season, amorphous Silicon technology shows the highest reliability for clear sky condition, m-cSi has the highest reliability for partly cloudy and HIT technology for overcast condition. HIT technology shows higher reliability both in the post monsoon and autumn season for clear sky and partly cloudy index conditions. The error in the estimations has been reduced by increasing the number of iterations. Keyword:Monte Carlo; SPV Module; Environment Parameter; Simulation; Reliability -------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 13-07-2017 Date of acceptance: 15-07-2017 --------------------------------------------------------------------------------------------------------------------------------------","PeriodicalId":13972,"journal":{"name":"International Journal of Engineering Research and Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliabilitystudy of Solar PV Power Production In Terms Of Weather Parameters Using Monte Carlo Simulation\",\"authors\":\"Himani Sharma, B. Bora, Shubham Sharma, R. Kumar, R. Jain\",\"doi\":\"10.9790/9622-0707053745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study the comprehensive reliability in terms of clearness index for power production of HIT, amorphous silicon & multi-crystalline silicon (m-cSi) technologies has been analyzed. The energy estimation of these three technologies is done based on regression, and deviation in the measured and estimated values is also reported. It has been found that for winter season, HIT technology module is the most reliable for overcast and partly cloudy conditions between the HIT, amorphous silicon &m-cSitechnologies. For summer season, amorphous Silicon technology shows the highest reliability for clear sky condition, m-cSi has the highest reliability for partly cloudy and HIT technology for overcast condition. HIT technology shows higher reliability both in the post monsoon and autumn season for clear sky and partly cloudy index conditions. The error in the estimations has been reduced by increasing the number of iterations. Keyword:Monte Carlo; SPV Module; Environment Parameter; Simulation; Reliability -------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 13-07-2017 Date of acceptance: 15-07-2017 --------------------------------------------------------------------------------------------------------------------------------------\",\"PeriodicalId\":13972,\"journal\":{\"name\":\"International Journal of Engineering Research and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Engineering Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9790/9622-0707053745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9790/9622-0707053745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliabilitystudy of Solar PV Power Production In Terms Of Weather Parameters Using Monte Carlo Simulation
In this study the comprehensive reliability in terms of clearness index for power production of HIT, amorphous silicon & multi-crystalline silicon (m-cSi) technologies has been analyzed. The energy estimation of these three technologies is done based on regression, and deviation in the measured and estimated values is also reported. It has been found that for winter season, HIT technology module is the most reliable for overcast and partly cloudy conditions between the HIT, amorphous silicon &m-cSitechnologies. For summer season, amorphous Silicon technology shows the highest reliability for clear sky condition, m-cSi has the highest reliability for partly cloudy and HIT technology for overcast condition. HIT technology shows higher reliability both in the post monsoon and autumn season for clear sky and partly cloudy index conditions. The error in the estimations has been reduced by increasing the number of iterations. Keyword:Monte Carlo; SPV Module; Environment Parameter; Simulation; Reliability -------------------------------------------------------------------------------------------------------------------------------------Date of Submission: 13-07-2017 Date of acceptance: 15-07-2017 --------------------------------------------------------------------------------------------------------------------------------------