G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz
{"title":"Wang-Landau算法的效率:一个简单的测试用例","authors":"G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz","doi":"10.1093/AMRX/ABU003","DOIUrl":null,"url":null,"abstract":"We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"82 1","pages":"275-311"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficiency of the Wang–Landau Algorithm: A Simple Test Case\",\"authors\":\"G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz\",\"doi\":\"10.1093/AMRX/ABU003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"82 1\",\"pages\":\"275-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABU003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABU003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficiency of the Wang–Landau Algorithm: A Simple Test Case
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.