Wang-Landau算法的效率:一个简单的测试用例

G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz
{"title":"Wang-Landau算法的效率:一个简单的测试用例","authors":"G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz","doi":"10.1093/AMRX/ABU003","DOIUrl":null,"url":null,"abstract":"We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.","PeriodicalId":89656,"journal":{"name":"Applied mathematics research express : AMRX","volume":"82 1","pages":"275-311"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Efficiency of the Wang–Landau Algorithm: A Simple Test Case\",\"authors\":\"G. Fort, B. Jourdain, E. Kuhn, T. Lelièvre, G. Stoltz\",\"doi\":\"10.1093/AMRX/ABU003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.\",\"PeriodicalId\":89656,\"journal\":{\"name\":\"Applied mathematics research express : AMRX\",\"volume\":\"82 1\",\"pages\":\"275-311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied mathematics research express : AMRX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/AMRX/ABU003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied mathematics research express : AMRX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/AMRX/ABU003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

分析了Wang-Landau算法的收敛性。这种抽样方法属于一般的自适应重要性抽样策略,它利用沿选定的反应坐标的自由能作为偏差。这些算法对于提高马尔可夫链蒙特卡罗算法在亚稳态下的采样性能非常有帮助。证明了Wang-Landau算法的收敛性及其中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficiency of the Wang–Landau Algorithm: A Simple Test Case
We analyze the convergence properties of the Wang-Landau algorithm. This sampling method belongs to the general class of adaptive importance sampling strategies which use the free energy along a chosen reaction coordinate as a bias. Such algorithms are very helpful to enhance the sampling properties of Markov Chain Monte Carlo algorithms, when the dynamics is metastable. We prove the convergence of the Wang-Landau algorithm and an associated central limit theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real Analyticity of Radiation Patterns on Asymptotically Hyperbolic Manifolds Upscaling of Solid-electrolyte Composite Intercalation Cathodes for Energy Storage Systems A bound on the pseudospectrum for a class of non-normal Schrödinger operators. Aharonov–Bohm Effect in Resonances for Scattering by Three Solenoids at Large Separation A Diffusion Limit for a Finite Capacity Storage Allocation Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1