Diptesh G. Naik, B. R. Naik, Akshay V. Salkar, Vrushali S. Joshi
{"title":"表面活性剂修饰氧化石墨烯对多巴胺的检测","authors":"Diptesh G. Naik, B. R. Naik, Akshay V. Salkar, Vrushali S. Joshi","doi":"10.4103/2349-3666.244768","DOIUrl":null,"url":null,"abstract":"A synthesis and characterization of a surfactant functionalize graphene oxide, and its potential applications for biosensor are presented. Graphene oxide was prepared using improved Hummer′s method and modified with two different surfactants viz. cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) by chemical method. The formation of the product was confirmed by characterizing it with UV-Viz, IR spectroscopy and Scanning electron microscopy (SEM). Here, we report simple and low cost method to develop electrochemical dopamine sensor by drop-casting catalysts on graphite rod conducting phase. A developed sensor is used for the voltammetric detection of the micro - millimolar quantity of dopamine without any fouling of electrode surface. The kinetics of electron transfer in the dopamine oxidation reaction on the surface of a catalysts are investigated.","PeriodicalId":34293,"journal":{"name":"Biomedical Research Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surfactant Modified Graphene Oxide for the Detection of Dopamine\",\"authors\":\"Diptesh G. Naik, B. R. Naik, Akshay V. Salkar, Vrushali S. Joshi\",\"doi\":\"10.4103/2349-3666.244768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A synthesis and characterization of a surfactant functionalize graphene oxide, and its potential applications for biosensor are presented. Graphene oxide was prepared using improved Hummer′s method and modified with two different surfactants viz. cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) by chemical method. The formation of the product was confirmed by characterizing it with UV-Viz, IR spectroscopy and Scanning electron microscopy (SEM). Here, we report simple and low cost method to develop electrochemical dopamine sensor by drop-casting catalysts on graphite rod conducting phase. A developed sensor is used for the voltammetric detection of the micro - millimolar quantity of dopamine without any fouling of electrode surface. The kinetics of electron transfer in the dopamine oxidation reaction on the surface of a catalysts are investigated.\",\"PeriodicalId\":34293,\"journal\":{\"name\":\"Biomedical Research Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/2349-3666.244768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/2349-3666.244768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surfactant Modified Graphene Oxide for the Detection of Dopamine
A synthesis and characterization of a surfactant functionalize graphene oxide, and its potential applications for biosensor are presented. Graphene oxide was prepared using improved Hummer′s method and modified with two different surfactants viz. cetyltrimethylammonium bromide (CTAB) and Sodium dodecyl sulfate (SDS) by chemical method. The formation of the product was confirmed by characterizing it with UV-Viz, IR spectroscopy and Scanning electron microscopy (SEM). Here, we report simple and low cost method to develop electrochemical dopamine sensor by drop-casting catalysts on graphite rod conducting phase. A developed sensor is used for the voltammetric detection of the micro - millimolar quantity of dopamine without any fouling of electrode surface. The kinetics of electron transfer in the dopamine oxidation reaction on the surface of a catalysts are investigated.