在行进的旋涡阵风中升力减轻

Y. Qian, Z. Wang, I. Gursul
{"title":"在行进的旋涡阵风中升力减轻","authors":"Y. Qian, Z. Wang, I. Gursul","doi":"10.1017/aer.2023.26","DOIUrl":null,"url":null,"abstract":"\n Lift alleviation by a mini-spoiler on aerofoils, unswept and swept wings encountering an isolated counter-clockwise vortical gust was investigated by means of force and velocity measurements. The flow separation region behind the spoiler remains little affected during the gust encounter. The maximum lift reduction is found for the static stall angle of attack. The change in the maximum lift during the gust encounter is approximately equal to that in steady freestream. The comparison with plunging aerofoils reveals that, for the same maximum gust and plunge velocity, the effectiveness of the mini-spoiler is much better in travelling gusts. This reveals the importance of the streamwise length scale of the incident gust. For the unswept wing, there is some three-dimensionality of the flow separation induced by the mini-spoiler near the wing tip. The magnitude of the lift reduction can be estimated using the aerofoil data and by making an aspect ratio correction for the reduced effective angle of attack. For the swept wing, the mini-spoiler can disrupt the formation of a leading-edge vortex induced by the incident vortex on the clean wing and can still reduce the maximum lift.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lift alleviation in travelling vortical gusts\",\"authors\":\"Y. Qian, Z. Wang, I. Gursul\",\"doi\":\"10.1017/aer.2023.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Lift alleviation by a mini-spoiler on aerofoils, unswept and swept wings encountering an isolated counter-clockwise vortical gust was investigated by means of force and velocity measurements. The flow separation region behind the spoiler remains little affected during the gust encounter. The maximum lift reduction is found for the static stall angle of attack. The change in the maximum lift during the gust encounter is approximately equal to that in steady freestream. The comparison with plunging aerofoils reveals that, for the same maximum gust and plunge velocity, the effectiveness of the mini-spoiler is much better in travelling gusts. This reveals the importance of the streamwise length scale of the incident gust. For the unswept wing, there is some three-dimensionality of the flow separation induced by the mini-spoiler near the wing tip. The magnitude of the lift reduction can be estimated using the aerofoil data and by making an aspect ratio correction for the reduced effective angle of attack. For the swept wing, the mini-spoiler can disrupt the formation of a leading-edge vortex induced by the incident vortex on the clean wing and can still reduce the maximum lift.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2023.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2023.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过力和速度测量,研究了在遇到孤立的逆时针旋涡阵风时,机翼、非后掠翼和后掠翼上的微型扰流板对升力的缓解作用。在阵风遭遇过程中,扰流板后面的气流分离区几乎没有受到影响。最大的升力减少是发现静态失速攻角。遇到阵风时最大升力的变化近似等于稳定自由流时的变化。与俯冲型翼型的对比表明,在相同的最大阵风和俯冲速度下,微型扰流片在行风中的效果要好得多。这揭示了入射阵风沿流长度尺度的重要性。对于非后掠翼,翼尖附近的小型扰流片引起的流动分离具有一定的三维性。升力减少的幅度可以估计使用翼型数据,并通过使一个纵横比校正减少的有效迎角。对于后掠翼,小型扰流片可以破坏干净翼上入射涡诱导的前缘涡的形成,但仍然可以降低最大升力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lift alleviation in travelling vortical gusts
Lift alleviation by a mini-spoiler on aerofoils, unswept and swept wings encountering an isolated counter-clockwise vortical gust was investigated by means of force and velocity measurements. The flow separation region behind the spoiler remains little affected during the gust encounter. The maximum lift reduction is found for the static stall angle of attack. The change in the maximum lift during the gust encounter is approximately equal to that in steady freestream. The comparison with plunging aerofoils reveals that, for the same maximum gust and plunge velocity, the effectiveness of the mini-spoiler is much better in travelling gusts. This reveals the importance of the streamwise length scale of the incident gust. For the unswept wing, there is some three-dimensionality of the flow separation induced by the mini-spoiler near the wing tip. The magnitude of the lift reduction can be estimated using the aerofoil data and by making an aspect ratio correction for the reduced effective angle of attack. For the swept wing, the mini-spoiler can disrupt the formation of a leading-edge vortex induced by the incident vortex on the clean wing and can still reduce the maximum lift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1