从锌冶炼渣中回收锰

R. Khosravi, R. Fatahi, H. Siavoshi, F. Molaei
{"title":"从锌冶炼渣中回收锰","authors":"R. Khosravi, R. Fatahi, H. Siavoshi, F. Molaei","doi":"10.3844/ajeassp.2020.748.758","DOIUrl":null,"url":null,"abstract":"Using a software-based experiment design, the application of the leaching process for the extraction of manganese from Zinc Plant Slag (ZPS) was investigated. In this study, the effect of different parameters, i.e., H2SO4 concentration, pulp density, agitation rate, temperature and reaction time, was investigated. Response Surface Methodology (RSM) based on the Central Composite Design (CCD) has been implemented to consider the main parameters. A hydrometallurgical route to manganese silicate from spent zinc plant residue has been proposed in this investigation. Based on the investigation, Mn can be extracted from ZPS in sulfuric acid without any oxidant agents. The results showed that the optimum conditions of this study are an H2SO4 concentration of 2 mol/L and a solid/liquid ratio of 0.07 g/mL at 50°C for 150 min and an agitation speed of 1000 rpm. A manganese leaching efficiency higher than 83% is reached under these conditions, with a corresponding 22% iron, 23% lead, 68% zinc and 65% aluminum.","PeriodicalId":7425,"journal":{"name":"American Journal of Engineering and Applied Sciences","volume":"61 1","pages":"748-758"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Recovery of Manganese from Zinc Smelter Slag\",\"authors\":\"R. Khosravi, R. Fatahi, H. Siavoshi, F. Molaei\",\"doi\":\"10.3844/ajeassp.2020.748.758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a software-based experiment design, the application of the leaching process for the extraction of manganese from Zinc Plant Slag (ZPS) was investigated. In this study, the effect of different parameters, i.e., H2SO4 concentration, pulp density, agitation rate, temperature and reaction time, was investigated. Response Surface Methodology (RSM) based on the Central Composite Design (CCD) has been implemented to consider the main parameters. A hydrometallurgical route to manganese silicate from spent zinc plant residue has been proposed in this investigation. Based on the investigation, Mn can be extracted from ZPS in sulfuric acid without any oxidant agents. The results showed that the optimum conditions of this study are an H2SO4 concentration of 2 mol/L and a solid/liquid ratio of 0.07 g/mL at 50°C for 150 min and an agitation speed of 1000 rpm. A manganese leaching efficiency higher than 83% is reached under these conditions, with a corresponding 22% iron, 23% lead, 68% zinc and 65% aluminum.\",\"PeriodicalId\":7425,\"journal\":{\"name\":\"American Journal of Engineering and Applied Sciences\",\"volume\":\"61 1\",\"pages\":\"748-758\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Engineering and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/ajeassp.2020.748.758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Engineering and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/ajeassp.2020.748.758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

采用软件实验设计,对浸出工艺在锌厂渣中提取锰的应用进行了研究。研究了H2SO4浓度、矿浆密度、搅拌速率、温度和反应时间等参数对该工艺的影响。采用基于中心复合设计(CCD)的响应面法(RSM)来考虑主要参数。提出了用锌厂废渣湿法冶炼硅酸锰的工艺路线。研究表明,在不添加任何氧化剂的情况下,可以在硫酸中从ZPS中提取Mn。结果表明,本研究的最佳条件为H2SO4浓度为2 mol/L,料液比为0.07 g/mL,温度为50℃,搅拌速度为1000 rpm,搅拌时间为150 min。在此条件下,锰浸出率高于83%,相应的铁浸出率为22%,铅浸出率为23%,锌浸出率为68%,铝浸出率为65%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recovery of Manganese from Zinc Smelter Slag
Using a software-based experiment design, the application of the leaching process for the extraction of manganese from Zinc Plant Slag (ZPS) was investigated. In this study, the effect of different parameters, i.e., H2SO4 concentration, pulp density, agitation rate, temperature and reaction time, was investigated. Response Surface Methodology (RSM) based on the Central Composite Design (CCD) has been implemented to consider the main parameters. A hydrometallurgical route to manganese silicate from spent zinc plant residue has been proposed in this investigation. Based on the investigation, Mn can be extracted from ZPS in sulfuric acid without any oxidant agents. The results showed that the optimum conditions of this study are an H2SO4 concentration of 2 mol/L and a solid/liquid ratio of 0.07 g/mL at 50°C for 150 min and an agitation speed of 1000 rpm. A manganese leaching efficiency higher than 83% is reached under these conditions, with a corresponding 22% iron, 23% lead, 68% zinc and 65% aluminum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integration of Cyber-Physical Systems, Digital Twins and 3D Printing in Advanced Manufacturing: A Synergistic Approach Optoelectronic Characterisation of Silicon and CIGS Photovoltaic Solar Cells Identification of the Presence of the "Swollen Shoot" Disease in Endemic Areas in Côte d'Ivoire Via Convolutional Neural Networks Bi-Stable Vibration Power Generation System Using Electromagnetic Motor and Efficiency Improvement by Stochastic Resonance A Classical Design Approach of Cascaded Controllers for a Traction Elevator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1