用于慢性肾脏疾病早期检测的智能系统

R. Chiu, Yu-Chin Chen, Shin-An Wang, Yen-Chun Chang, Li-Chien Chen
{"title":"用于慢性肾脏疾病早期检测的智能系统","authors":"R. Chiu, Yu-Chin Chen, Shin-An Wang, Yen-Chun Chang, Li-Chien Chen","doi":"10.1155/2013/539570","DOIUrl":null,"url":null,"abstract":"This paper aims to construct intelligence models by applying the technologies of artificial neural networks including backpropagation network (BPN), generalized feedforward neural networks (GRNN), and modular neural network (MNN) that are developed, respectively, for the early detection of chronic kidney disease (CKD). The comparison of accuracy, sensitivity, and specificity among three models is subsequently performed. The model of best performance is chosen. By leveraging the aid of this system, CKD physicians can have an alternative way to detect chronic kidney diseases in early stage of a patient. Meanwhile, it may also be used by the public for self-detecting the risk of contracting CKD.","PeriodicalId":7288,"journal":{"name":"Adv. Artif. Neural Syst.","volume":"46 1","pages":"539570:1-539570:7"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Intelligent Systems Developed for the Early Detection of Chronic Kidney Disease\",\"authors\":\"R. Chiu, Yu-Chin Chen, Shin-An Wang, Yen-Chun Chang, Li-Chien Chen\",\"doi\":\"10.1155/2013/539570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to construct intelligence models by applying the technologies of artificial neural networks including backpropagation network (BPN), generalized feedforward neural networks (GRNN), and modular neural network (MNN) that are developed, respectively, for the early detection of chronic kidney disease (CKD). The comparison of accuracy, sensitivity, and specificity among three models is subsequently performed. The model of best performance is chosen. By leveraging the aid of this system, CKD physicians can have an alternative way to detect chronic kidney diseases in early stage of a patient. Meanwhile, it may also be used by the public for self-detecting the risk of contracting CKD.\",\"PeriodicalId\":7288,\"journal\":{\"name\":\"Adv. Artif. Neural Syst.\",\"volume\":\"46 1\",\"pages\":\"539570:1-539570:7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Neural Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/539570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Neural Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/539570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文旨在应用分别发展起来的反向传播网络(BPN)、广义前馈神经网络(GRNN)和模块化神经网络(MNN)等人工神经网络技术构建智能模型,用于慢性肾脏疾病(CKD)的早期检测。随后对三种模型的准确性、敏感性和特异性进行了比较。选择性能最好的模型。通过利用该系统的帮助,CKD医生可以在患者早期发现慢性肾病的另一种方法。同时,它也可以被公众用来自我检测患慢性肾病的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Systems Developed for the Early Detection of Chronic Kidney Disease
This paper aims to construct intelligence models by applying the technologies of artificial neural networks including backpropagation network (BPN), generalized feedforward neural networks (GRNN), and modular neural network (MNN) that are developed, respectively, for the early detection of chronic kidney disease (CKD). The comparison of accuracy, sensitivity, and specificity among three models is subsequently performed. The model of best performance is chosen. By leveraging the aid of this system, CKD physicians can have an alternative way to detect chronic kidney diseases in early stage of a patient. Meanwhile, it may also be used by the public for self-detecting the risk of contracting CKD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovery of MicroRNAs in Cardamom (Elettaria cardamomum Maton) under Drought Stress Anopheles gambiae: Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum-Infected Midgut Five-Coordinate Zinc(II) Complex: Synthesis, Characterization, Molecular Structure, and Antibacterial Activities of Bis-[(E)-2-hydroxy-N′- {1-(4-methoxyphenyl)ethylidene}benzohydrazido]dimethylsulfoxidezinc(II) Complex Effect of Glyphosate and Mancozeb on the Rhizobia Isolated from Nodules of Vicia faba L. and on Their N2-Fixation, North Showa, Amhara Regional State, Ethiopia Balancing African Elephant Conservation with Human Well-Being in Rombo Area, Tanzania
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1