{"title":"基于色相饱和度和形态学图像的海鱼新鲜度识别","authors":"E. Ekojono, A. Herman, Mentari Mustika","doi":"10.25139/INFORM.V6I1.3228","DOIUrl":null,"url":null,"abstract":"Euthynus is one of the fish that is widely consumed for the enjoyment of the people of Indonesia or abroad, because of its very soft quality, easy to obtain, and contains a lot of essential protein amino acids that are good for the body. This research aims to identify the freshness of the fish purchased based on the eyes and fish gills. The initial process of identifying the freshness of fish uses several methods. Image input process through image object taking using a cell phone camera. The image object is used to determine the value of the RGB image object. RGB color extraction clarifies the value obtained from the image object before proceeding to the next process. Image resize is the process of cutting the image on the desired object part. Image conversion using the HSV method was used to determine the freshness of fish in the gills. The Local Binary Pattern method is used to determine the freshness of the fisheye. The next step is to refine the RGB image into Morphology. The KNN (K-Nearest Neighbor Method) method is used to group objects based on learning data closest to the object. The journal analysis results on the comparison of methods, after 45 trials for each method, found that the Hue Saturation Value method obtained the highest success by 90% and for the texture value obtained 85% success.","PeriodicalId":52760,"journal":{"name":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Identification of Freshness of Marine Fish Based on Image of Hue Saturation Value and Morphology\",\"authors\":\"E. Ekojono, A. Herman, Mentari Mustika\",\"doi\":\"10.25139/INFORM.V6I1.3228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euthynus is one of the fish that is widely consumed for the enjoyment of the people of Indonesia or abroad, because of its very soft quality, easy to obtain, and contains a lot of essential protein amino acids that are good for the body. This research aims to identify the freshness of the fish purchased based on the eyes and fish gills. The initial process of identifying the freshness of fish uses several methods. Image input process through image object taking using a cell phone camera. The image object is used to determine the value of the RGB image object. RGB color extraction clarifies the value obtained from the image object before proceeding to the next process. Image resize is the process of cutting the image on the desired object part. Image conversion using the HSV method was used to determine the freshness of fish in the gills. The Local Binary Pattern method is used to determine the freshness of the fisheye. The next step is to refine the RGB image into Morphology. The KNN (K-Nearest Neighbor Method) method is used to group objects based on learning data closest to the object. The journal analysis results on the comparison of methods, after 45 trials for each method, found that the Hue Saturation Value method obtained the highest success by 90% and for the texture value obtained 85% success.\",\"PeriodicalId\":52760,\"journal\":{\"name\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25139/INFORM.V6I1.3228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inform Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25139/INFORM.V6I1.3228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of Freshness of Marine Fish Based on Image of Hue Saturation Value and Morphology
Euthynus is one of the fish that is widely consumed for the enjoyment of the people of Indonesia or abroad, because of its very soft quality, easy to obtain, and contains a lot of essential protein amino acids that are good for the body. This research aims to identify the freshness of the fish purchased based on the eyes and fish gills. The initial process of identifying the freshness of fish uses several methods. Image input process through image object taking using a cell phone camera. The image object is used to determine the value of the RGB image object. RGB color extraction clarifies the value obtained from the image object before proceeding to the next process. Image resize is the process of cutting the image on the desired object part. Image conversion using the HSV method was used to determine the freshness of fish in the gills. The Local Binary Pattern method is used to determine the freshness of the fisheye. The next step is to refine the RGB image into Morphology. The KNN (K-Nearest Neighbor Method) method is used to group objects based on learning data closest to the object. The journal analysis results on the comparison of methods, after 45 trials for each method, found that the Hue Saturation Value method obtained the highest success by 90% and for the texture value obtained 85% success.