基于多层感知器的碳钢微结构磨损模式识别系统

E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez
{"title":"基于多层感知器的碳钢微结构磨损模式识别系统","authors":"E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez","doi":"10.15446/ING.INVESTIG.V25N2.60265","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.","PeriodicalId":21285,"journal":{"name":"Revista Ingenieria E Investigacion","volume":"33 1","pages":"113-120"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron\",\"authors\":\"E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez\",\"doi\":\"10.15446/ING.INVESTIG.V25N2.60265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.\",\"PeriodicalId\":21285,\"journal\":{\"name\":\"Revista Ingenieria E Investigacion\",\"volume\":\"33 1\",\"pages\":\"113-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenieria E Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/ING.INVESTIG.V25N2.60265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenieria E Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/ING.INVESTIG.V25N2.60265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文介绍了碳钢磨损模式识别系统在热电厂的应用,该系统对具有三种寿命状态的材料进行了显微组织分类。该方法采用人工神经网络多层感知器与数字图像处理相结合的方法来识别高温条件下用作导体的材料的不同物理状态。研究的微观结构模式为球化、脱碳和石墨化。微观结构是在墨西哥联邦电力委员会测试实验室设备和材料(LAPEM-CFE)获得的显微镜图像中显示的。与人类专家相比,该系统以更短的分析时间和检测成本获得了96.83%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron
This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study on the Performance and Emission Characteristics of a Diesel Engine Operated with Ternary Higher Alcohol Biofuel Blends A Gender Gap Analysis on Academic Performance in Engineering Students on Admission and Exit Standardized Tests Identification of Eroded and Erosion Risk Areas Using Remote Sensing and GIS in the Quebrada Seca watershed A Hybrid-Flipped Classroom Approach: Students’ Perception and Performance Assessment Towards a Theory of Interoperability of Software Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1