E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez
{"title":"基于多层感知器的碳钢微结构磨损模式识别系统","authors":"E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez","doi":"10.15446/ING.INVESTIG.V25N2.60265","DOIUrl":null,"url":null,"abstract":"This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.","PeriodicalId":21285,"journal":{"name":"Revista Ingenieria E Investigacion","volume":"33 1","pages":"113-120"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron\",\"authors\":\"E. Santoyo, José A. López, J. Y. Mendiola, R. Serrato, José Alfredo Jiménez García, Juan Antonio Sánchez Márquez\",\"doi\":\"10.15446/ING.INVESTIG.V25N2.60265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.\",\"PeriodicalId\":21285,\"journal\":{\"name\":\"Revista Ingenieria E Investigacion\",\"volume\":\"33 1\",\"pages\":\"113-120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Ingenieria E Investigacion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/ING.INVESTIG.V25N2.60265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Ingenieria E Investigacion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/ING.INVESTIG.V25N2.60265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
System for the recognition of wear patterns on microstructures of carbon steels using a multilayer perceptron
This paper describes the application of a recognition system wear patterns present in carbon steel, the system classifies the microstructure of the materials which have three conditions throughout life-time in thermoelectric plants. This approach employs the artificial neural network multilayer perceptron in conjunction with the digital image processing to recognize the different physical states of the materials used as conductors in conditions of high temperatures. The studied patterns in the microstructure are spheronization, decarburization and graphitization. The microstructure is revealed from microscope images obtained in the Testing Laboratory Equipment and Materials of the Federal Electricity Commission in Mexico (LAPEM-CFE). The proposed system compared to the human expert, obtained an accuracy of 96.83 % with a shorter analysis time and inspection cost.