基于视觉的多智能体系统分布式协调与群集

N. Moshtagh, A. Jadbabaie, Kostas Daniilidis
{"title":"基于视觉的多智能体系统分布式协调与群集","authors":"N. Moshtagh, A. Jadbabaie, Kostas Daniilidis","doi":"10.15607/RSS.2005.I.006","DOIUrl":null,"url":null,"abstract":"We propose a biologically inspired, distributed coordination scheme based on nearest-neighbor interactions for a set of mobile kinematic agents equipped with vision sensors. It is assumed that each agent is only capable of measuring the following three quantities relative to each of its nearest neighbors (as defined by a proximity graph): time-to-collision, a single optical flow vector and relative bearing. We prove that the proposed distributed control law results in alignment of headings and flocking, even when the topology of the proximity graph representing the interconnection changes with time. It is shown that when the proximity graph is ”jointly connected” over time, flocking and velocity alignment will occur. Furthermore, the distributed control law can be extended to the case where the agents follow a leader. Under similar connectivity assumptions, we prove that the headings converge to that of the leader. Simulations are presented to demonstrate the effectiveness of this approach.","PeriodicalId":87357,"journal":{"name":"Robotics science and systems : online proceedings","volume":"124 1","pages":"41-48"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Vision-based Distributed Coordination and Flocking of Multi-agent Systems\",\"authors\":\"N. Moshtagh, A. Jadbabaie, Kostas Daniilidis\",\"doi\":\"10.15607/RSS.2005.I.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a biologically inspired, distributed coordination scheme based on nearest-neighbor interactions for a set of mobile kinematic agents equipped with vision sensors. It is assumed that each agent is only capable of measuring the following three quantities relative to each of its nearest neighbors (as defined by a proximity graph): time-to-collision, a single optical flow vector and relative bearing. We prove that the proposed distributed control law results in alignment of headings and flocking, even when the topology of the proximity graph representing the interconnection changes with time. It is shown that when the proximity graph is ”jointly connected” over time, flocking and velocity alignment will occur. Furthermore, the distributed control law can be extended to the case where the agents follow a leader. Under similar connectivity assumptions, we prove that the headings converge to that of the leader. Simulations are presented to demonstrate the effectiveness of this approach.\",\"PeriodicalId\":87357,\"journal\":{\"name\":\"Robotics science and systems : online proceedings\",\"volume\":\"124 1\",\"pages\":\"41-48\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics science and systems : online proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15607/RSS.2005.I.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics science and systems : online proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/RSS.2005.I.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

我们提出了一种基于最近邻交互的受生物学启发的分布式协调方案,用于一组配备视觉传感器的移动运动学代理。假设每个智能体相对于其最近的邻居(由接近图定义)只能测量以下三个量:碰撞时间,单个光流矢量和相对方位。我们证明了所提出的分布式控制律即使在表示互连的接近图的拓扑结构随时间变化时也会导致标题对齐和群集。结果表明,当接近图随时间“联合连接”时,会出现群集和速度对齐。此外,分布式控制律还可以推广到智能体服从领导者的情况。在相似的连通性假设下,我们证明了标题收敛于领导者的标题。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision-based Distributed Coordination and Flocking of Multi-agent Systems
We propose a biologically inspired, distributed coordination scheme based on nearest-neighbor interactions for a set of mobile kinematic agents equipped with vision sensors. It is assumed that each agent is only capable of measuring the following three quantities relative to each of its nearest neighbors (as defined by a proximity graph): time-to-collision, a single optical flow vector and relative bearing. We prove that the proposed distributed control law results in alignment of headings and flocking, even when the topology of the proximity graph representing the interconnection changes with time. It is shown that when the proximity graph is ”jointly connected” over time, flocking and velocity alignment will occur. Furthermore, the distributed control law can be extended to the case where the agents follow a leader. Under similar connectivity assumptions, we prove that the headings converge to that of the leader. Simulations are presented to demonstrate the effectiveness of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
期刊最新文献
Toward Certifiable Motion Planning for Medical Steerable Needles. Latent Belief Space Motion Planning under Cost, Dynamics, and Intent Uncertainty Efficient Parametric Multi-Fidelity Surface Mapping Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. Toward Asymptotically-Optimal Inspection Planning via Efficient Near-Optimal Graph Search.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1