Z. Sherova, A. Nasriddinov, S. Kholov, S. Usmanova, Z. Muhidinov
{"title":"家蚕废茧中丝胶蛋白的分子量及分子量分布","authors":"Z. Sherova, A. Nasriddinov, S. Kholov, S. Usmanova, Z. Muhidinov","doi":"10.21285/2227-2925-2022-12-4-547-556","DOIUrl":null,"url":null,"abstract":"Silk sericin comprises a globular water-soluble protein that surrounds silk fibres, sticking them together and providing cocoon adhesion. Sericin was isolated from the extract solution in two ways: the first sample was obtained by concentrating the filtered extract at low pressure (SLP); the second sample was obtained by ultrafiltration (SUF) using a membrane. In this work, the size exclusion-high-performance liquid chromatography involving viscometry and refractive index detectors was used to determine the molecular weight and conformation of sericin polypeptides obtained from cocoons of the Bombyx mori silkworm. The aggregation processes of silk sericin protein under various isolation conditions from the solution were considered. It was shown that sericin macromolecules are present as a monodisperse polypeptide at low concentrations, which aggregates at concentrations greater than 1–2 mg/ml. The obtained data indicate that, along with the parameters of the extraction process, the conditions for its isolation from the solution, including temperature, pressure and degree of concentration, affect the molecular weight and aggregative behaviour of the protein. The results confirm and complement previously obtained data on the influence of various factors on the association of protein macromolecules in solution. The resulting sericin fractions can find many applications, including materials for tissue engineering, coatings for surface modification, cell culture media, cosmetics, as well as food additives and medical biomaterials.","PeriodicalId":20601,"journal":{"name":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular weight and molecular weight distribution of sericin protein extracted from cocoon waste of Bombyx mori\",\"authors\":\"Z. Sherova, A. Nasriddinov, S. Kholov, S. Usmanova, Z. Muhidinov\",\"doi\":\"10.21285/2227-2925-2022-12-4-547-556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silk sericin comprises a globular water-soluble protein that surrounds silk fibres, sticking them together and providing cocoon adhesion. Sericin was isolated from the extract solution in two ways: the first sample was obtained by concentrating the filtered extract at low pressure (SLP); the second sample was obtained by ultrafiltration (SUF) using a membrane. In this work, the size exclusion-high-performance liquid chromatography involving viscometry and refractive index detectors was used to determine the molecular weight and conformation of sericin polypeptides obtained from cocoons of the Bombyx mori silkworm. The aggregation processes of silk sericin protein under various isolation conditions from the solution were considered. It was shown that sericin macromolecules are present as a monodisperse polypeptide at low concentrations, which aggregates at concentrations greater than 1–2 mg/ml. The obtained data indicate that, along with the parameters of the extraction process, the conditions for its isolation from the solution, including temperature, pressure and degree of concentration, affect the molecular weight and aggregative behaviour of the protein. The results confirm and complement previously obtained data on the influence of various factors on the association of protein macromolecules in solution. The resulting sericin fractions can find many applications, including materials for tissue engineering, coatings for surface modification, cell culture media, cosmetics, as well as food additives and medical biomaterials.\",\"PeriodicalId\":20601,\"journal\":{\"name\":\"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21285/2227-2925-2022-12-4-547-556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF UNIVERSITIES APPLIED CHEMISTRY AND BIOTECHNOLOGY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21285/2227-2925-2022-12-4-547-556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Molecular weight and molecular weight distribution of sericin protein extracted from cocoon waste of Bombyx mori
Silk sericin comprises a globular water-soluble protein that surrounds silk fibres, sticking them together and providing cocoon adhesion. Sericin was isolated from the extract solution in two ways: the first sample was obtained by concentrating the filtered extract at low pressure (SLP); the second sample was obtained by ultrafiltration (SUF) using a membrane. In this work, the size exclusion-high-performance liquid chromatography involving viscometry and refractive index detectors was used to determine the molecular weight and conformation of sericin polypeptides obtained from cocoons of the Bombyx mori silkworm. The aggregation processes of silk sericin protein under various isolation conditions from the solution were considered. It was shown that sericin macromolecules are present as a monodisperse polypeptide at low concentrations, which aggregates at concentrations greater than 1–2 mg/ml. The obtained data indicate that, along with the parameters of the extraction process, the conditions for its isolation from the solution, including temperature, pressure and degree of concentration, affect the molecular weight and aggregative behaviour of the protein. The results confirm and complement previously obtained data on the influence of various factors on the association of protein macromolecules in solution. The resulting sericin fractions can find many applications, including materials for tissue engineering, coatings for surface modification, cell culture media, cosmetics, as well as food additives and medical biomaterials.