Md. Tanvir Emrose, Emily L. Payne, Chenglong You, G. Veronis
{"title":"基于相变材料的多层宽带可切换吸收体","authors":"Md. Tanvir Emrose, Emily L. Payne, Chenglong You, G. Veronis","doi":"10.1117/12.2677847","DOIUrl":null,"url":null,"abstract":"We introduce multilayer structures with the phase-change material germanium-antimony-tellurium (GST) for use as broadband switchable absorbers in the infrared wavelength range. We use a memetic optimization algorithm coupled with the transfer-matrix method to optimize both the material composition and the layer thicknesses of the multilayer structures. We show that in the optimized structures near perfect absorption can be switched to very low absorption in a broad wavelength range by switching GST from its crystalline to its amorphous phase. Our results could pave the way to a new class of broadband switchable absorbers and thermal sources in the infrared wavelength range.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"17 1","pages":"126470M - 126470M-3"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer broadband switchable absorbers based on phase-change materials\",\"authors\":\"Md. Tanvir Emrose, Emily L. Payne, Chenglong You, G. Veronis\",\"doi\":\"10.1117/12.2677847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce multilayer structures with the phase-change material germanium-antimony-tellurium (GST) for use as broadband switchable absorbers in the infrared wavelength range. We use a memetic optimization algorithm coupled with the transfer-matrix method to optimize both the material composition and the layer thicknesses of the multilayer structures. We show that in the optimized structures near perfect absorption can be switched to very low absorption in a broad wavelength range by switching GST from its crystalline to its amorphous phase. Our results could pave the way to a new class of broadband switchable absorbers and thermal sources in the infrared wavelength range.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"17 1\",\"pages\":\"126470M - 126470M-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2677847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2677847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multilayer broadband switchable absorbers based on phase-change materials
We introduce multilayer structures with the phase-change material germanium-antimony-tellurium (GST) for use as broadband switchable absorbers in the infrared wavelength range. We use a memetic optimization algorithm coupled with the transfer-matrix method to optimize both the material composition and the layer thicknesses of the multilayer structures. We show that in the optimized structures near perfect absorption can be switched to very low absorption in a broad wavelength range by switching GST from its crystalline to its amorphous phase. Our results could pave the way to a new class of broadband switchable absorbers and thermal sources in the infrared wavelength range.