{"title":"一种NoSQL图数据库模式提取方法","authors":"A. A. Frozza, Salomão Rodrigues Jacinto, R. Mello","doi":"10.1109/IRI49571.2020.00046","DOIUrl":null,"url":null,"abstract":"Currently, a large volume of heterogeneous data is generated and consumed by several classes of applications, which raise a new family of database models called NoSQL. NoSQL graph databases is a member of this family. They provide high scalability and are schemaless, i.e., they do not require an implicit schema such as relational databases. However, the knowledge of how data is structured may be of great importance for data integration or data analysis processes. There are some works in the literature that extract the schema from graph structures or graph-based data sources. Different from them, this work proposes a comprehensive approach that consider all the common NoSQL database graph data model concepts, and generates a schema in the recent JSON Schema recommendation. Experimental evaluations show that our solution generates a suitable schema representation with a linear complexity.","PeriodicalId":93159,"journal":{"name":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An Approach for Schema Extraction of NoSQL Graph Databases\",\"authors\":\"A. A. Frozza, Salomão Rodrigues Jacinto, R. Mello\",\"doi\":\"10.1109/IRI49571.2020.00046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, a large volume of heterogeneous data is generated and consumed by several classes of applications, which raise a new family of database models called NoSQL. NoSQL graph databases is a member of this family. They provide high scalability and are schemaless, i.e., they do not require an implicit schema such as relational databases. However, the knowledge of how data is structured may be of great importance for data integration or data analysis processes. There are some works in the literature that extract the schema from graph structures or graph-based data sources. Different from them, this work proposes a comprehensive approach that consider all the common NoSQL database graph data model concepts, and generates a schema in the recent JSON Schema recommendation. Experimental evaluations show that our solution generates a suitable schema representation with a linear complexity.\",\"PeriodicalId\":93159,\"journal\":{\"name\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI49571.2020.00046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 21st International Conference on Information Reuse and Integration for Data Science : IRI 2020 : proceedings : virtual conference, 11-13 August 2020. IEEE International Conference on Information Reuse and Integration (21st : 2...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI49571.2020.00046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Approach for Schema Extraction of NoSQL Graph Databases
Currently, a large volume of heterogeneous data is generated and consumed by several classes of applications, which raise a new family of database models called NoSQL. NoSQL graph databases is a member of this family. They provide high scalability and are schemaless, i.e., they do not require an implicit schema such as relational databases. However, the knowledge of how data is structured may be of great importance for data integration or data analysis processes. There are some works in the literature that extract the schema from graph structures or graph-based data sources. Different from them, this work proposes a comprehensive approach that consider all the common NoSQL database graph data model concepts, and generates a schema in the recent JSON Schema recommendation. Experimental evaluations show that our solution generates a suitable schema representation with a linear complexity.