Nikolaos Tsantalis, Theodoros Chaikalis, A. Chatzigeorgiou
{"title":"JDeodorant的十年:寻找气味的经验教训","authors":"Nikolaos Tsantalis, Theodoros Chaikalis, A. Chatzigeorgiou","doi":"10.1109/SANER.2018.8330192","DOIUrl":null,"url":null,"abstract":"Deodorants are different from perfumes, because they are applied directly on body and by killing bacteria they reduce odours and offer a refreshing fragrance. That was our goal when we first thought about \"bad smells\" in code: to develop techniques for effectively identifying and removing (i.e., deodorizing) code smells from object-oriented software. JDeodorant encompasses a number of techniques for suggesting and automatically applying refactoring opportunities on Java source code, in a way that requires limited effort on behalf of the developer. In contrast to other approaches that rely on generic strategies that can be adapted to various smells, JDeodorant adopts ad-hoc strategies for each smell considering the particular characteristics of the underlying design or code problem. In this retrospective paper, we discuss the impact of JDeodorant over the last ten years and a number of tools and techniques that have been developed for a similar purpose which either compare their results with JDeodorant or have built on top of JDeodorant. Finally, we discuss the empirical findings from a number of studies that employed JDeodorant to extract their datasets.","PeriodicalId":6602,"journal":{"name":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","volume":"1 1","pages":"4-14"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Ten years of JDeodorant: Lessons learned from the hunt for smells\",\"authors\":\"Nikolaos Tsantalis, Theodoros Chaikalis, A. Chatzigeorgiou\",\"doi\":\"10.1109/SANER.2018.8330192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deodorants are different from perfumes, because they are applied directly on body and by killing bacteria they reduce odours and offer a refreshing fragrance. That was our goal when we first thought about \\\"bad smells\\\" in code: to develop techniques for effectively identifying and removing (i.e., deodorizing) code smells from object-oriented software. JDeodorant encompasses a number of techniques for suggesting and automatically applying refactoring opportunities on Java source code, in a way that requires limited effort on behalf of the developer. In contrast to other approaches that rely on generic strategies that can be adapted to various smells, JDeodorant adopts ad-hoc strategies for each smell considering the particular characteristics of the underlying design or code problem. In this retrospective paper, we discuss the impact of JDeodorant over the last ten years and a number of tools and techniques that have been developed for a similar purpose which either compare their results with JDeodorant or have built on top of JDeodorant. Finally, we discuss the empirical findings from a number of studies that employed JDeodorant to extract their datasets.\",\"PeriodicalId\":6602,\"journal\":{\"name\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"volume\":\"1 1\",\"pages\":\"4-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SANER.2018.8330192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SANER.2018.8330192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ten years of JDeodorant: Lessons learned from the hunt for smells
Deodorants are different from perfumes, because they are applied directly on body and by killing bacteria they reduce odours and offer a refreshing fragrance. That was our goal when we first thought about "bad smells" in code: to develop techniques for effectively identifying and removing (i.e., deodorizing) code smells from object-oriented software. JDeodorant encompasses a number of techniques for suggesting and automatically applying refactoring opportunities on Java source code, in a way that requires limited effort on behalf of the developer. In contrast to other approaches that rely on generic strategies that can be adapted to various smells, JDeodorant adopts ad-hoc strategies for each smell considering the particular characteristics of the underlying design or code problem. In this retrospective paper, we discuss the impact of JDeodorant over the last ten years and a number of tools and techniques that have been developed for a similar purpose which either compare their results with JDeodorant or have built on top of JDeodorant. Finally, we discuss the empirical findings from a number of studies that employed JDeodorant to extract their datasets.