基于物联网插座的监控系统设计

Yugerita Firmance, S. Amalia, Kartiria Kartiria
{"title":"基于物联网插座的监控系统设计","authors":"Yugerita Firmance, S. Amalia, Kartiria Kartiria","doi":"10.26418/elkha.v15i1.62083","DOIUrl":null,"url":null,"abstract":"The government's program to promote energy conservation efforts by reducing the occurrence of vampire power in the surrounding environment, particularly in the household sector. For this reason, modifications are made to the socket so that it can be controlled and monitored remotely through an application on a smartphone. The hardware design uses the NodeMCU ESP8266 V3 as a microcontroller. Combined with the PZEM-004T sensor module to read current, voltage, and power values. Relay module to secure the circuit in case of higher loads. So that in the system, the socket can be monitored 3 sockets simultaneously. While the software design uses the MIT app inventor as the user interface, and the Thingspeak platform as a server. The data is saved in.csv format, which can be opened in Microsoft Excel.  The data stored is in the form of the name of the electronic equipment, the time of use, as well as the voltage, current, and power of the device. So that users can manage the use of electrical appliances at home and reduce the occurrence of electric vampires. The test results showed an average voltage error rate of 0.24% with a voltage range of 226 V–230 V, an average current error rate of 22.18%, and an error rate on power of 15.39%. This is caused by the measured load being too small, resulting in higher errors in current and power. ","PeriodicalId":32754,"journal":{"name":"Elkha Jurnal Teknik Elektro","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Designing a Monitoring and Controlling System on IOT-Based Sockets\",\"authors\":\"Yugerita Firmance, S. Amalia, Kartiria Kartiria\",\"doi\":\"10.26418/elkha.v15i1.62083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The government's program to promote energy conservation efforts by reducing the occurrence of vampire power in the surrounding environment, particularly in the household sector. For this reason, modifications are made to the socket so that it can be controlled and monitored remotely through an application on a smartphone. The hardware design uses the NodeMCU ESP8266 V3 as a microcontroller. Combined with the PZEM-004T sensor module to read current, voltage, and power values. Relay module to secure the circuit in case of higher loads. So that in the system, the socket can be monitored 3 sockets simultaneously. While the software design uses the MIT app inventor as the user interface, and the Thingspeak platform as a server. The data is saved in.csv format, which can be opened in Microsoft Excel.  The data stored is in the form of the name of the electronic equipment, the time of use, as well as the voltage, current, and power of the device. So that users can manage the use of electrical appliances at home and reduce the occurrence of electric vampires. The test results showed an average voltage error rate of 0.24% with a voltage range of 226 V–230 V, an average current error rate of 22.18%, and an error rate on power of 15.39%. This is caused by the measured load being too small, resulting in higher errors in current and power. \",\"PeriodicalId\":32754,\"journal\":{\"name\":\"Elkha Jurnal Teknik Elektro\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elkha Jurnal Teknik Elektro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/elkha.v15i1.62083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elkha Jurnal Teknik Elektro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/elkha.v15i1.62083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

政府计划通过减少周边环境中,特别是家庭部门中吸血鬼电力的发生来促进节能工作。出于这个原因,对套接字进行了修改,以便可以通过智能手机上的应用程序远程控制和监视它。硬件设计采用NodeMCU ESP8266 V3作为微控制器。结合pzm - 004t传感器模块读取电流,电压和功率值。继电器模块,以确保电路在更高的负载情况下。从而在系统中可以同时对3个socket进行监控。而软件设计则使用麻省理工学院应用程序发明人作为用户界面,Thingspeak平台作为服务器。数据保存为。csv格式,可在Microsoft Excel中打开。存储的数据以电子设备的名称、使用时间以及设备的电压、电流和功率的形式存在。这样用户就可以对家中电器的使用进行管理,减少电吸血鬼的发生。测试结果表明,在226 V ~ 230 V电压范围内,平均电压错误率为0.24%,平均电流错误率为22.18%,功率错误率为15.39%。这是由于测量负载太小,导致电流和功率误差较大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designing a Monitoring and Controlling System on IOT-Based Sockets
The government's program to promote energy conservation efforts by reducing the occurrence of vampire power in the surrounding environment, particularly in the household sector. For this reason, modifications are made to the socket so that it can be controlled and monitored remotely through an application on a smartphone. The hardware design uses the NodeMCU ESP8266 V3 as a microcontroller. Combined with the PZEM-004T sensor module to read current, voltage, and power values. Relay module to secure the circuit in case of higher loads. So that in the system, the socket can be monitored 3 sockets simultaneously. While the software design uses the MIT app inventor as the user interface, and the Thingspeak platform as a server. The data is saved in.csv format, which can be opened in Microsoft Excel.  The data stored is in the form of the name of the electronic equipment, the time of use, as well as the voltage, current, and power of the device. So that users can manage the use of electrical appliances at home and reduce the occurrence of electric vampires. The test results showed an average voltage error rate of 0.24% with a voltage range of 226 V–230 V, an average current error rate of 22.18%, and an error rate on power of 15.39%. This is caused by the measured load being too small, resulting in higher errors in current and power. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
23
审稿时长
10 weeks
期刊最新文献
Multi-oscillations Detection for Process Variables Based on K-Nearest Neighbor Interference Analysis Between 5G System and Fixed Satellite Service in the 28 GHz Band Heading control for quadruped stair climbing based on PD controller for the KRSRI competition Optimization Objective Function Corona Discharge Acoustic Using Fuzzy c-Means (FcM ) Temperature and Humidity Control System for Pole-Mounted Metering Circuit Breaker with Artificial Neural Network Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1