基于松弛振荡的混沌Mott忆阻器的神经形态设计

Bonan Yan, Xiong Cao, Hai Li
{"title":"基于松弛振荡的混沌Mott忆阻器的神经形态设计","authors":"Bonan Yan, Xiong Cao, Hai Li","doi":"10.1145/3195970.3195977","DOIUrl":null,"url":null,"abstract":"The recent proposed nanoscale Mott memristor features negative differential resistance and chaotic dynamics. This work proposes a novel neuromorphic computing system that utilizes Mott memristors to simplify peripheral circuitry. According to the analytic description of chaotic dynamics and relaxation oscillation, we carefully tune the working point of Mott memristors to balance the chaotic behavior weighing testing accuracy and training efficiency. Compared with conventional designs, the proposed design accelerates the training by 1.893× averagely and saves 27.68% and 43.32% power consumption with 36.67% and 26.75% less area for single-layer and two-layer perceptrons, respectively.","PeriodicalId":6491,"journal":{"name":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","volume":"55 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Neuromorphic Design Using Chaotic Mott Memristor with Relaxation Oscillation\",\"authors\":\"Bonan Yan, Xiong Cao, Hai Li\",\"doi\":\"10.1145/3195970.3195977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent proposed nanoscale Mott memristor features negative differential resistance and chaotic dynamics. This work proposes a novel neuromorphic computing system that utilizes Mott memristors to simplify peripheral circuitry. According to the analytic description of chaotic dynamics and relaxation oscillation, we carefully tune the working point of Mott memristors to balance the chaotic behavior weighing testing accuracy and training efficiency. Compared with conventional designs, the proposed design accelerates the training by 1.893× averagely and saves 27.68% and 43.32% power consumption with 36.67% and 26.75% less area for single-layer and two-layer perceptrons, respectively.\",\"PeriodicalId\":6491,\"journal\":{\"name\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"volume\":\"55 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3195970.3195977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3195970.3195977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近提出的纳米Mott忆阻器具有负差分电阻和混沌动力学特性。这项工作提出了一个新的神经形态计算系统,利用莫特忆阻器来简化外围电路。根据混沌动力学和弛豫振荡的分析描述,精心调整Mott记忆电阻器的工作点,以平衡混沌行为,衡量测试精度和训练效率。与传统设计相比,本文设计的训练速度平均提高了1.893倍,功耗节省了27.68%和43.32%,单层和双层感知器的面积分别减少了36.67%和26.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Neuromorphic Design Using Chaotic Mott Memristor with Relaxation Oscillation
The recent proposed nanoscale Mott memristor features negative differential resistance and chaotic dynamics. This work proposes a novel neuromorphic computing system that utilizes Mott memristors to simplify peripheral circuitry. According to the analytic description of chaotic dynamics and relaxation oscillation, we carefully tune the working point of Mott memristors to balance the chaotic behavior weighing testing accuracy and training efficiency. Compared with conventional designs, the proposed design accelerates the training by 1.893× averagely and saves 27.68% and 43.32% power consumption with 36.67% and 26.75% less area for single-layer and two-layer perceptrons, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Soft-FET: Phase transition material assisted Soft switching F ield E ffect T ransistor for supply voltage droop mitigation Modelling Multicore Contention on the AURIX™ TC27x Sign-Magnitude SC: Getting 10X Accuracy for Free in Stochastic Computing for Deep Neural Networks* Generalized Augmented Lagrangian and Its Applications to VLSI Global Placement* Side-channel security of superscalar CPUs : Evaluating the Impact of Micro-architectural Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1