{"title":"统计因果关系的决策理论基础","authors":"P. Dawid","doi":"10.1515/jci-2020-0008","DOIUrl":null,"url":null,"abstract":"Abstract We develop a mathematical and interpretative foundation for the enterprise of decision-theoretic (DT) statistical causality, which is a straightforward way of representing and addressing causal questions. DT reframes causal inference as “assisted decision-making” and aims to understand when, and how, I can make use of external data, typically observational, to help me solve a decision problem by taking advantage of assumed relationships between the data and my problem. The relationships embodied in any representation of a causal problem require deeper justification, which is necessarily context-dependent. Here we clarify the considerations needed to support applications of the DT methodology. Exchangeability considerations are used to structure the required relationships, and a distinction drawn between intention to treat and intervention to treat forms the basis for the enabling condition of “ignorability.” We also show how the DT perspective unifies and sheds light on other popular formalisations of statistical causality, including potential responses and directed acyclic graphs.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"40 1","pages":"39 - 77"},"PeriodicalIF":1.7000,"publicationDate":"2020-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Decision-theoretic foundations for statistical causality\",\"authors\":\"P. Dawid\",\"doi\":\"10.1515/jci-2020-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We develop a mathematical and interpretative foundation for the enterprise of decision-theoretic (DT) statistical causality, which is a straightforward way of representing and addressing causal questions. DT reframes causal inference as “assisted decision-making” and aims to understand when, and how, I can make use of external data, typically observational, to help me solve a decision problem by taking advantage of assumed relationships between the data and my problem. The relationships embodied in any representation of a causal problem require deeper justification, which is necessarily context-dependent. Here we clarify the considerations needed to support applications of the DT methodology. Exchangeability considerations are used to structure the required relationships, and a distinction drawn between intention to treat and intervention to treat forms the basis for the enabling condition of “ignorability.” We also show how the DT perspective unifies and sheds light on other popular formalisations of statistical causality, including potential responses and directed acyclic graphs.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"40 1\",\"pages\":\"39 - 77\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2020-0008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2020-0008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Decision-theoretic foundations for statistical causality
Abstract We develop a mathematical and interpretative foundation for the enterprise of decision-theoretic (DT) statistical causality, which is a straightforward way of representing and addressing causal questions. DT reframes causal inference as “assisted decision-making” and aims to understand when, and how, I can make use of external data, typically observational, to help me solve a decision problem by taking advantage of assumed relationships between the data and my problem. The relationships embodied in any representation of a causal problem require deeper justification, which is necessarily context-dependent. Here we clarify the considerations needed to support applications of the DT methodology. Exchangeability considerations are used to structure the required relationships, and a distinction drawn between intention to treat and intervention to treat forms the basis for the enabling condition of “ignorability.” We also show how the DT perspective unifies and sheds light on other popular formalisations of statistical causality, including potential responses and directed acyclic graphs.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.