一种新的l1正则化时变自回归脑连通性估计模型:基于视觉任务相关fMRI数据的研究

Li Zhang, Z. Fu, S. Chan, H. C. Wu, Z. G. Zhang
{"title":"一种新的l1正则化时变自回归脑连通性估计模型:基于视觉任务相关fMRI数据的研究","authors":"Li Zhang, Z. Fu, S. Chan, H. C. Wu, Z. G. Zhang","doi":"10.1109/ISCAS.2016.7527162","DOIUrl":null,"url":null,"abstract":"Studies of time-varying or dynamic brain connectivity (BC) using functional magnetic resonance imaging (fMRI) are crucial to understand the relationship between different brain regions. This paper presents a novel method for estimating dynamic BC using a time-varying multivariate autoregressive (AR) model with spatial sparsity and temporal continuity constraints. The problem is formulated as a maximum a posterior probability (MAP) estimation problem and solved as a least square problem with Li-regularization for imposing the constraints. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is employed to estimate the model parameters for making inference of dynamic BC. The proposed method was evaluated using synthetic data and visual checkerboard task experiment fMRI data. The results show that the method can effectively capture transient information transfer among visual-related brain regions whereas controlled areas not related to the process remain inactive. These verify the effectiveness and reduced variance of the proposed method for investigating dynamic task-related BC from fMRI data.","PeriodicalId":6546,"journal":{"name":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"15 1","pages":"29-32"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new L1-regularized time-varying autoregressive model for brain connectivity estimation: A study using visual task-related fMRI data\",\"authors\":\"Li Zhang, Z. Fu, S. Chan, H. C. Wu, Z. G. Zhang\",\"doi\":\"10.1109/ISCAS.2016.7527162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Studies of time-varying or dynamic brain connectivity (BC) using functional magnetic resonance imaging (fMRI) are crucial to understand the relationship between different brain regions. This paper presents a novel method for estimating dynamic BC using a time-varying multivariate autoregressive (AR) model with spatial sparsity and temporal continuity constraints. The problem is formulated as a maximum a posterior probability (MAP) estimation problem and solved as a least square problem with Li-regularization for imposing the constraints. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is employed to estimate the model parameters for making inference of dynamic BC. The proposed method was evaluated using synthetic data and visual checkerboard task experiment fMRI data. The results show that the method can effectively capture transient information transfer among visual-related brain regions whereas controlled areas not related to the process remain inactive. These verify the effectiveness and reduced variance of the proposed method for investigating dynamic task-related BC from fMRI data.\",\"PeriodicalId\":6546,\"journal\":{\"name\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"15 1\",\"pages\":\"29-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2016.7527162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2016.7527162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用功能磁共振成像(fMRI)研究时变或动态脑连通性(BC)对于理解不同脑区之间的关系至关重要。提出了一种利用具有空间稀疏性和时间连续性约束的时变多元自回归(AR)模型估计动态BC的新方法。该问题被表述为最大后验概率(MAP)估计问题,并通过li -正则化来求解约束条件的最小二乘问题。采用有限记忆Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)方法估计模型参数,进行动态BC推理。利用合成数据和视觉棋盘任务实验fMRI数据对该方法进行了评价。结果表明,该方法可以有效地捕获视觉相关脑区之间的瞬时信息传递,而与该过程无关的控制区域则保持不活动状态。这些验证了从fMRI数据中研究动态任务相关BC的有效性和减少的方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new L1-regularized time-varying autoregressive model for brain connectivity estimation: A study using visual task-related fMRI data
Studies of time-varying or dynamic brain connectivity (BC) using functional magnetic resonance imaging (fMRI) are crucial to understand the relationship between different brain regions. This paper presents a novel method for estimating dynamic BC using a time-varying multivariate autoregressive (AR) model with spatial sparsity and temporal continuity constraints. The problem is formulated as a maximum a posterior probability (MAP) estimation problem and solved as a least square problem with Li-regularization for imposing the constraints. The Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method is employed to estimate the model parameters for making inference of dynamic BC. The proposed method was evaluated using synthetic data and visual checkerboard task experiment fMRI data. The results show that the method can effectively capture transient information transfer among visual-related brain regions whereas controlled areas not related to the process remain inactive. These verify the effectiveness and reduced variance of the proposed method for investigating dynamic task-related BC from fMRI data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Live demonstration: An automatic evaluation platform for physical unclonable function test Low-cost configurable ring oscillator PUF with improved uniqueness A passivity based stability measure for discrete 3-D IIR system realizations An effective generator-allocating method to enhance the robustness of power grid Global resource capacity algorithm with path splitting for virtual network embedding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1