基于自适应块背景模型的目标检测

W. Tsai, Jian-Hui Chen, M. Sheu, Chi-Chia Sun
{"title":"基于自适应块背景模型的目标检测","authors":"W. Tsai, Jian-Hui Chen, M. Sheu, Chi-Chia Sun","doi":"10.1109/ICCE-TW.2016.7520910","DOIUrl":null,"url":null,"abstract":"This paper propose an adaptable block-based background modeling and real time image object detection algorithm. In training step, we present adaptable block-based background model that uses major color number to determine the block size. This background model can reduce the memory consumption, efficiently. In detection step, we use one pixel to compare with background model. Then, it can reduce processing time. The experiment results show that we can save 33.9% memory space. Finally, we can achieve 27.25 frames per second for the benchmark video with image size 768×576.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"39 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object detection using adaptive block-based background model\",\"authors\":\"W. Tsai, Jian-Hui Chen, M. Sheu, Chi-Chia Sun\",\"doi\":\"10.1109/ICCE-TW.2016.7520910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper propose an adaptable block-based background modeling and real time image object detection algorithm. In training step, we present adaptable block-based background model that uses major color number to determine the block size. This background model can reduce the memory consumption, efficiently. In detection step, we use one pixel to compare with background model. Then, it can reduce processing time. The experiment results show that we can save 33.9% memory space. Finally, we can achieve 27.25 frames per second for the benchmark video with image size 768×576.\",\"PeriodicalId\":6620,\"journal\":{\"name\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"volume\":\"39 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2016.7520910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7520910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种自适应的基于分块的背景建模和实时图像目标检测算法。在训练步骤中,我们提出了基于自适应块的背景模型,该模型使用主色数来确定块的大小。这种后台模式可以有效地减少内存的消耗。在检测步骤中,我们使用一个像素与背景模型进行比较。然后,它可以减少处理时间。实验结果表明,我们可以节省33.9%的内存空间。最后,对于图像大小为768×576的基准视频,我们可以达到每秒27.25帧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object detection using adaptive block-based background model
This paper propose an adaptable block-based background modeling and real time image object detection algorithm. In training step, we present adaptable block-based background model that uses major color number to determine the block size. This background model can reduce the memory consumption, efficiently. In detection step, we use one pixel to compare with background model. Then, it can reduce processing time. The experiment results show that we can save 33.9% memory space. Finally, we can achieve 27.25 frames per second for the benchmark video with image size 768×576.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1