将基于局部相关的平滑过渡模型扩展到跨声速流动的可压缩性修正

Michael G. Piotrowski, D. Zingg
{"title":"将基于局部相关的平滑过渡模型扩展到跨声速流动的可压缩性修正","authors":"Michael G. Piotrowski, D. Zingg","doi":"10.1017/aer.2022.105","DOIUrl":null,"url":null,"abstract":"Abstract This paper presents progress towards a transition modelling capability for use in the numerical solution of the Reynolds-averaged Navier-Stokes equations that provides accurate predictions for transonic flows and is thus suitable for use in the design of wings for aircraft flying at transonic speeds. To this end, compressibility corrections are developed and investigated to extend commonly used empirical correlations to transonic flight conditions while retaining their accuracy at low speeds. A compressibility correction for Tollmien-Schlichting instabilities is developed and applied to a smooth local correlation-based transition model and a stationary crossflow instability compressibility correction is included by adding a new crossflow source term function. Two- and three-dimensional transonic transition test cases demonstrate that the Tollmien-Schlichting compressibility correction produces substantially improved agreement with the experimental transition locations, particularly for higher Reynolds number applications where the effects of flow compressibility are expected to be more significant, such as the NASA CRM-NLF wing-body configuration, while the crossflow compressibility correction prevents an inaccurate, upstream transition front. The compressibility corrections and modifications do not significantly affect the numerical behaviour of the model, which provides an efficient alternative to non-local and higher-fidelity approaches, and can be applied to other transport-equation-based transition models with low-speed empirical correlations without affecting their predictive capability in the incompressible regime.","PeriodicalId":22567,"journal":{"name":"The Aeronautical Journal (1968)","volume":"410 1","pages":"1141 - 1170"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressibility corrections to extend a smooth local correlation-based transition model to transonic flows\",\"authors\":\"Michael G. Piotrowski, D. Zingg\",\"doi\":\"10.1017/aer.2022.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper presents progress towards a transition modelling capability for use in the numerical solution of the Reynolds-averaged Navier-Stokes equations that provides accurate predictions for transonic flows and is thus suitable for use in the design of wings for aircraft flying at transonic speeds. To this end, compressibility corrections are developed and investigated to extend commonly used empirical correlations to transonic flight conditions while retaining their accuracy at low speeds. A compressibility correction for Tollmien-Schlichting instabilities is developed and applied to a smooth local correlation-based transition model and a stationary crossflow instability compressibility correction is included by adding a new crossflow source term function. Two- and three-dimensional transonic transition test cases demonstrate that the Tollmien-Schlichting compressibility correction produces substantially improved agreement with the experimental transition locations, particularly for higher Reynolds number applications where the effects of flow compressibility are expected to be more significant, such as the NASA CRM-NLF wing-body configuration, while the crossflow compressibility correction prevents an inaccurate, upstream transition front. The compressibility corrections and modifications do not significantly affect the numerical behaviour of the model, which provides an efficient alternative to non-local and higher-fidelity approaches, and can be applied to other transport-equation-based transition models with low-speed empirical correlations without affecting their predictive capability in the incompressible regime.\",\"PeriodicalId\":22567,\"journal\":{\"name\":\"The Aeronautical Journal (1968)\",\"volume\":\"410 1\",\"pages\":\"1141 - 1170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Aeronautical Journal (1968)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/aer.2022.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Aeronautical Journal (1968)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/aer.2022.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要本文介绍了用于雷诺平均纳维-斯托克斯方程数值解的过渡建模能力的进展,该能力提供了跨音速流动的准确预测,因此适合用于跨音速飞行飞机机翼的设计。为此,开发和研究了可压缩性修正,以将常用的经验相关性扩展到跨音速飞行条件,同时在低速下保持其准确性。提出了Tollmien-Schlichting不稳定性的可压缩性校正方法,并将其应用于基于局部相关的光滑过渡模型,通过增加一个新的横流源项函数,包含了平稳横流不稳定性的可压缩性校正方法。二维和三维跨音速转捩测试案例表明,Tollmien-Schlichting可压缩性校正与实验转捩位置的一致性大大提高,特别是在高雷诺数应用中,流动可压缩性的影响预计更为显著,例如NASA的cr - nlf翼身结构,而横向流动可压缩性校正可防止不准确的上游转捩锋。可压缩性修正和修改不会显著影响模型的数值行为,这为非局部和高保真度方法提供了一种有效的替代方法,并且可以应用于其他基于传输方程的低速经验相关过渡模型,而不会影响其在不可压缩状态下的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compressibility corrections to extend a smooth local correlation-based transition model to transonic flows
Abstract This paper presents progress towards a transition modelling capability for use in the numerical solution of the Reynolds-averaged Navier-Stokes equations that provides accurate predictions for transonic flows and is thus suitable for use in the design of wings for aircraft flying at transonic speeds. To this end, compressibility corrections are developed and investigated to extend commonly used empirical correlations to transonic flight conditions while retaining their accuracy at low speeds. A compressibility correction for Tollmien-Schlichting instabilities is developed and applied to a smooth local correlation-based transition model and a stationary crossflow instability compressibility correction is included by adding a new crossflow source term function. Two- and three-dimensional transonic transition test cases demonstrate that the Tollmien-Schlichting compressibility correction produces substantially improved agreement with the experimental transition locations, particularly for higher Reynolds number applications where the effects of flow compressibility are expected to be more significant, such as the NASA CRM-NLF wing-body configuration, while the crossflow compressibility correction prevents an inaccurate, upstream transition front. The compressibility corrections and modifications do not significantly affect the numerical behaviour of the model, which provides an efficient alternative to non-local and higher-fidelity approaches, and can be applied to other transport-equation-based transition models with low-speed empirical correlations without affecting their predictive capability in the incompressible regime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spray behaviour of hydro-treated ester fatty acids fuel made from used cooking oil at low injection pressures Visualising flight regimes using self-organising maps A folding wing system for guided ammunitions: mechanism design, manufacturing and real-time results with LQR, LQI, SMC and SOSMC Re-entry vehicle performance analysis under the control of lateral jet Spacecraft attitude control based on generalised dynamic inversion with adaptive neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1