基于时间序列分析的短期负荷预测:一个案例研究

S. Dodamani, Vinay J Shetty, R. Magadum
{"title":"基于时间序列分析的短期负荷预测:一个案例研究","authors":"S. Dodamani, Vinay J Shetty, R. Magadum","doi":"10.1109/TAPENERGY.2015.7229635","DOIUrl":null,"url":null,"abstract":"Short term load forecasting plays a vital role in the daily generation, efficient power system planning, unit maintenance, determining unit commitment and secured power system operation. There are number of approaches for short term load forecasting but it is observed that time series approach is most feasible and provides more reasonable accurate forecast. The present paper discuses the Autoregressive (AR) approach of time series analysis for short term load forecast for Tamilnadu (India) load data. The time series Autoregressive gives better forecasting results for 4 to 6 Hours ahead.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"37 1","pages":"299-303"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Short term load forecast based on time series analysis: A case study\",\"authors\":\"S. Dodamani, Vinay J Shetty, R. Magadum\",\"doi\":\"10.1109/TAPENERGY.2015.7229635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short term load forecasting plays a vital role in the daily generation, efficient power system planning, unit maintenance, determining unit commitment and secured power system operation. There are number of approaches for short term load forecasting but it is observed that time series approach is most feasible and provides more reasonable accurate forecast. The present paper discuses the Autoregressive (AR) approach of time series analysis for short term load forecast for Tamilnadu (India) load data. The time series Autoregressive gives better forecasting results for 4 to 6 Hours ahead.\",\"PeriodicalId\":6552,\"journal\":{\"name\":\"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)\",\"volume\":\"37 1\",\"pages\":\"299-303\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAPENERGY.2015.7229635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

短期负荷预测在日常发电、高效规划电力系统、机组维护、确定机组投入、保障电力系统运行等方面发挥着重要作用。短期负荷预测方法有很多,但时间序列预测方法最可行,预测结果更合理准确。本文讨论了印度泰米尔纳德邦负荷数据短期负荷预测的自回归时间序列分析方法。时间序列自回归对未来4 ~ 6小时的预测效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short term load forecast based on time series analysis: A case study
Short term load forecasting plays a vital role in the daily generation, efficient power system planning, unit maintenance, determining unit commitment and secured power system operation. There are number of approaches for short term load forecasting but it is observed that time series approach is most feasible and provides more reasonable accurate forecast. The present paper discuses the Autoregressive (AR) approach of time series analysis for short term load forecast for Tamilnadu (India) load data. The time series Autoregressive gives better forecasting results for 4 to 6 Hours ahead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of common mode voltage in three phase inverter A novel topology of forward-flyback PFC converter with constant on-time control Online benefit optimization in a liberalized/free microgrid market model UHVDC transmission with dedicated metallic return Bridgeless flyback converter for low power lighting application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1