基于LSSVM的煤矿安全等级预测

Q1 Social Sciences HumanMachine Communication Journal Pub Date : 2010-04-24 DOI:10.1109/MVHI.2010.71
Desheng Liu, Zhiru Xu, Wei Wang, Lei Wang
{"title":"基于LSSVM的煤矿安全等级预测","authors":"Desheng Liu, Zhiru Xu, Wei Wang, Lei Wang","doi":"10.1109/MVHI.2010.71","DOIUrl":null,"url":null,"abstract":"Coal mine disaster has a serious threat to production and safety, mine safety prediction is an extremely challenging problem from many perspectives. This paper describes a generic fusion model for coal mine safety combining information from several physically different sensors aiming to the detection, monitoring and crisis management of such natural hazards. A conduct model base on least squares support vector machine (LSSVM) is proposed. Experimental results from the coal mine sensors are presented","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Prediction of Coal Mine Safety Level Based on LSSVM\",\"authors\":\"Desheng Liu, Zhiru Xu, Wei Wang, Lei Wang\",\"doi\":\"10.1109/MVHI.2010.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coal mine disaster has a serious threat to production and safety, mine safety prediction is an extremely challenging problem from many perspectives. This paper describes a generic fusion model for coal mine safety combining information from several physically different sensors aiming to the detection, monitoring and crisis management of such natural hazards. A conduct model base on least squares support vector machine (LSSVM) is proposed. Experimental results from the coal mine sensors are presented\",\"PeriodicalId\":34860,\"journal\":{\"name\":\"HumanMachine Communication Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HumanMachine Communication Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MVHI.2010.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVHI.2010.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2

摘要

煤矿灾害严重威胁着煤矿的生产和安全,煤矿安全预测是一个从多方面都极具挑战性的问题。针对煤矿自然灾害的探测、监测和危机管理问题,提出了一种综合多种物理传感器信息的煤矿安全通用融合模型。提出了一种基于最小二乘支持向量机(LSSVM)的行为模型。给出了矿井传感器的实验结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Coal Mine Safety Level Based on LSSVM
Coal mine disaster has a serious threat to production and safety, mine safety prediction is an extremely challenging problem from many perspectives. This paper describes a generic fusion model for coal mine safety combining information from several physically different sensors aiming to the detection, monitoring and crisis management of such natural hazards. A conduct model base on least squares support vector machine (LSSVM) is proposed. Experimental results from the coal mine sensors are presented
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Defining Dialogues: Tracing the Evolution of Human-Machine Communication Who is (communicatively more) responsible behind the wheel? Applying the theory of communicative responsibility to TAM in the context of using navigation technology Archipelagic Human-Machine Communication: Building Bridges amidst Cultivated Ambiguity Triggered by Socialbots: Communicative Anthropomorphization of Bots in Online Conversations Boundary Regulation Processes and Privacy Concerns With (Non-)Use of Voice-Based Assistants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1