基于资源约束的视频流暴力检测快速收敛训练

Catalin Vladu, L. Prodan, A. Iovanovici
{"title":"基于资源约束的视频流暴力检测快速收敛训练","authors":"Catalin Vladu, L. Prodan, A. Iovanovici","doi":"10.1109/CINTI-MACRo57952.2022.10029428","DOIUrl":null,"url":null,"abstract":"This paper addresses the automated identification of violent acts from CCTV video streams using a Deep Learning model under constrained resources. While this process typically involves a powerful setup, it is useful to accelerate the training and get accurate results using more modest computational resources that would bring automatic recognition of violent acts closer to common surveillance resources. Our results provide 94.98% accuracy, on par with the state-of-the-art, but at a fraction of the training time. This translates into lower energy requirements and allows a broader deployment on large scale (urban) autonomous surveillance networks while providing an increased privacy towards citizens and lower chances of abuse from authorities.","PeriodicalId":18535,"journal":{"name":"Micro","volume":"6 1","pages":"000239-000244"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resource Constrained, Fast Convergence Training for Violence Detection in Video Streams\",\"authors\":\"Catalin Vladu, L. Prodan, A. Iovanovici\",\"doi\":\"10.1109/CINTI-MACRo57952.2022.10029428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the automated identification of violent acts from CCTV video streams using a Deep Learning model under constrained resources. While this process typically involves a powerful setup, it is useful to accelerate the training and get accurate results using more modest computational resources that would bring automatic recognition of violent acts closer to common surveillance resources. Our results provide 94.98% accuracy, on par with the state-of-the-art, but at a fraction of the training time. This translates into lower energy requirements and allows a broader deployment on large scale (urban) autonomous surveillance networks while providing an increased privacy towards citizens and lower chances of abuse from authorities.\",\"PeriodicalId\":18535,\"journal\":{\"name\":\"Micro\",\"volume\":\"6 1\",\"pages\":\"000239-000244\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI-MACRo57952.2022.10029428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用有限资源下的深度学习模型解决了CCTV视频流中暴力行为的自动识别问题。虽然这个过程通常需要一个强大的设置,但使用更适度的计算资源来加速训练并获得准确的结果是有用的,这将使暴力行为的自动识别更接近常见的监视资源。我们的结果提供了94.98%的准确率,与最先进的技术相当,但只需要一小部分训练时间。这意味着更低的能源需求,并允许在大规模(城市)自主监控网络上进行更广泛的部署,同时为公民提供更多的隐私,降低当局滥用的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Constrained, Fast Convergence Training for Violence Detection in Video Streams
This paper addresses the automated identification of violent acts from CCTV video streams using a Deep Learning model under constrained resources. While this process typically involves a powerful setup, it is useful to accelerate the training and get accurate results using more modest computational resources that would bring automatic recognition of violent acts closer to common surveillance resources. Our results provide 94.98% accuracy, on par with the state-of-the-art, but at a fraction of the training time. This translates into lower energy requirements and allows a broader deployment on large scale (urban) autonomous surveillance networks while providing an increased privacy towards citizens and lower chances of abuse from authorities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring Microstructure Patterns: Influence on Hydrophobic Properties of 3D-Printed Surfaces Optical and Morphological Characterization of Nanoscale Oxides Grown in Low-Energy H+-Implanted c-Silicon Extending Polymer Opal Structural Color Properties into the Near-Infrared Implementation of Numerical Model for Prediction of Temperature Distribution for Metallic-Coated Firefighter Protective Clothing A Microfluidic Paper-Based Lateral Flow Device for Quantitative ELISA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1