{"title":"一层一层的薄膜制造过程中的激光图像化","authors":"K. Leake, Alexandria Carter, H. Yochum","doi":"10.1117/12.2632090","DOIUrl":null,"url":null,"abstract":"A modification of the traditional layer by layer process where the substrate is irradiated with laser light during the polycation and/or polyanion dipping cycles is described. By adjusting the laser irradiation time during dipping, irradiation power, number of bilayers, and the location and speed of laser irradiation, a variety of structures with controlled thicknesses can be fabricated. Laser patterned multilayer PAH/PTEBS polymer thin films were fabricated and characterized with absorbance mapping to demonstrate several patterning approaches. Results for 1) two laser patterned tracks, 2) single laser patterned track with varied average laser power across the sample from a continuously variable neutral density filter, and 3) laser patterning using a beam sent through multiple circular apertures are described. Based on the variable neutral density filter laser pattern, for 20 bilayer PAH/PTEBS films, an absorbance difference between off and on pattern of 0.1 requires an average laser power of less than 15 mW at 405 nm. The patterns produced are on the scale of several millimeters, though they could be made much smaller by focusing the laser used for patterning.","PeriodicalId":13820,"journal":{"name":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","volume":"19 1","pages":"1220203 - 1220203-6"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layer by layer thin film fabrication with in-process laser patterning\",\"authors\":\"K. Leake, Alexandria Carter, H. Yochum\",\"doi\":\"10.1117/12.2632090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A modification of the traditional layer by layer process where the substrate is irradiated with laser light during the polycation and/or polyanion dipping cycles is described. By adjusting the laser irradiation time during dipping, irradiation power, number of bilayers, and the location and speed of laser irradiation, a variety of structures with controlled thicknesses can be fabricated. Laser patterned multilayer PAH/PTEBS polymer thin films were fabricated and characterized with absorbance mapping to demonstrate several patterning approaches. Results for 1) two laser patterned tracks, 2) single laser patterned track with varied average laser power across the sample from a continuously variable neutral density filter, and 3) laser patterning using a beam sent through multiple circular apertures are described. Based on the variable neutral density filter laser pattern, for 20 bilayer PAH/PTEBS films, an absorbance difference between off and on pattern of 0.1 requires an average laser power of less than 15 mW at 405 nm. The patterns produced are on the scale of several millimeters, though they could be made much smaller by focusing the laser used for patterning.\",\"PeriodicalId\":13820,\"journal\":{\"name\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"volume\":\"19 1\",\"pages\":\"1220203 - 1220203-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2632090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Nanoscience, Engineering and Technology (ICONSET 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2632090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Layer by layer thin film fabrication with in-process laser patterning
A modification of the traditional layer by layer process where the substrate is irradiated with laser light during the polycation and/or polyanion dipping cycles is described. By adjusting the laser irradiation time during dipping, irradiation power, number of bilayers, and the location and speed of laser irradiation, a variety of structures with controlled thicknesses can be fabricated. Laser patterned multilayer PAH/PTEBS polymer thin films were fabricated and characterized with absorbance mapping to demonstrate several patterning approaches. Results for 1) two laser patterned tracks, 2) single laser patterned track with varied average laser power across the sample from a continuously variable neutral density filter, and 3) laser patterning using a beam sent through multiple circular apertures are described. Based on the variable neutral density filter laser pattern, for 20 bilayer PAH/PTEBS films, an absorbance difference between off and on pattern of 0.1 requires an average laser power of less than 15 mW at 405 nm. The patterns produced are on the scale of several millimeters, though they could be made much smaller by focusing the laser used for patterning.