{"title":"基于人工智能神经网络和图像处理的手写识别","authors":"Sara Aqab, Muhammad Tariq","doi":"10.14569/ijacsa.2020.0110719","DOIUrl":null,"url":null,"abstract":"Due to increased usage of digital technologies in all sectors and in almost all day to day activities to store and pass information, Handwriting character recognition has become a popular subject of research. Handwriting remains relevant, but people still want to have Handwriting copies converted into electronic copies that can be communicated and stored electronically. Handwriting character recognition refers to the computer's ability to detect and interpret intelligible Handwriting input from Handwriting sources such as touch screens, photographs, paper documents, and other sources. Handwriting characters remain complex since different individuals have different handwriting styles. This paper aims to report the development of a Handwriting character recognition system that will be used to read students and lectures Handwriting notes. The development is based on an artificial neural network, which is a field of study in artificial intelligence. Different techniques and methods are used to develop a Handwriting character recognition system. However, few of them focus on neural networks. The use of neural networks for recognizing Handwriting characters is more efficient and robust compared with other computing techniques. The paper also outlines the methodology, design, and architecture of the Handwriting character recognition system and testing and results of the system development. The aim is to demonstrate the effectiveness of neural networks for Handwriting character recognition.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing\",\"authors\":\"Sara Aqab, Muhammad Tariq\",\"doi\":\"10.14569/ijacsa.2020.0110719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to increased usage of digital technologies in all sectors and in almost all day to day activities to store and pass information, Handwriting character recognition has become a popular subject of research. Handwriting remains relevant, but people still want to have Handwriting copies converted into electronic copies that can be communicated and stored electronically. Handwriting character recognition refers to the computer's ability to detect and interpret intelligible Handwriting input from Handwriting sources such as touch screens, photographs, paper documents, and other sources. Handwriting characters remain complex since different individuals have different handwriting styles. This paper aims to report the development of a Handwriting character recognition system that will be used to read students and lectures Handwriting notes. The development is based on an artificial neural network, which is a field of study in artificial intelligence. Different techniques and methods are used to develop a Handwriting character recognition system. However, few of them focus on neural networks. The use of neural networks for recognizing Handwriting characters is more efficient and robust compared with other computing techniques. The paper also outlines the methodology, design, and architecture of the Handwriting character recognition system and testing and results of the system development. The aim is to demonstrate the effectiveness of neural networks for Handwriting character recognition.\",\"PeriodicalId\":13824,\"journal\":{\"name\":\"International Journal of Advanced Computer Science and Applications\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Computer Science and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14569/ijacsa.2020.0110719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2020.0110719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Handwriting Recognition using Artificial Intelligence Neural Network and Image Processing
Due to increased usage of digital technologies in all sectors and in almost all day to day activities to store and pass information, Handwriting character recognition has become a popular subject of research. Handwriting remains relevant, but people still want to have Handwriting copies converted into electronic copies that can be communicated and stored electronically. Handwriting character recognition refers to the computer's ability to detect and interpret intelligible Handwriting input from Handwriting sources such as touch screens, photographs, paper documents, and other sources. Handwriting characters remain complex since different individuals have different handwriting styles. This paper aims to report the development of a Handwriting character recognition system that will be used to read students and lectures Handwriting notes. The development is based on an artificial neural network, which is a field of study in artificial intelligence. Different techniques and methods are used to develop a Handwriting character recognition system. However, few of them focus on neural networks. The use of neural networks for recognizing Handwriting characters is more efficient and robust compared with other computing techniques. The paper also outlines the methodology, design, and architecture of the Handwriting character recognition system and testing and results of the system development. The aim is to demonstrate the effectiveness of neural networks for Handwriting character recognition.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications