{"title":"改进铸坯碳偏析及热轧棒材的遗传","authors":"Mengyun Zhang, Y. Bao, Li-hua Zhao, Xin Li","doi":"10.1051/metal/2021072","DOIUrl":null,"url":null,"abstract":"In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of carbon segregation in cast bloom and heredity in hot-rolled bar\",\"authors\":\"Mengyun Zhang, Y. Bao, Li-hua Zhao, Xin Li\",\"doi\":\"10.1051/metal/2021072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021072\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021072","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Improvement of carbon segregation in cast bloom and heredity in hot-rolled bar
In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.
期刊介绍:
Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags.
The journal is listed in the citation index Web of Science and has an Impact Factor.
It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.