改进铸坯碳偏析及热轧棒材的遗传

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Metallurgical Research & Technology Pub Date : 2021-01-01 DOI:10.1051/metal/2021072
Mengyun Zhang, Y. Bao, Li-hua Zhao, Xin Li
{"title":"改进铸坯碳偏析及热轧棒材的遗传","authors":"Mengyun Zhang, Y. Bao, Li-hua Zhao, Xin Li","doi":"10.1051/metal/2021072","DOIUrl":null,"url":null,"abstract":"In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.","PeriodicalId":18527,"journal":{"name":"Metallurgical Research & Technology","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improvement of carbon segregation in cast bloom and heredity in hot-rolled bar\",\"authors\":\"Mengyun Zhang, Y. Bao, Li-hua Zhao, Xin Li\",\"doi\":\"10.1051/metal/2021072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.\",\"PeriodicalId\":18527,\"journal\":{\"name\":\"Metallurgical Research & Technology\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical Research & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1051/metal/2021072\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical Research & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1051/metal/2021072","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 2

摘要

本研究通过数值模拟系统优化了300 × 400 mm 42CrMo合金结构钢坯的铸造速度,比较研究了机械软还原对铸坯中碳偏析的影响。当浇注速度为0.60 m·min−1时,软还原过程中坯体中心凝固组织致密,碳偏析得到改善。并对轧制前后样品中的碳分布进行了分析。结合软还原工艺,浇注速度为0.50 m·min - 1、0.55 m·min - 1和0.60 m·min - 1时,坯棒截面上碳的均匀性明显改善,主要体现在芯区。坯与轧制棒材的有效偏析长度比例约为40%。这一现象充分验证了轧制过程中各元素的遗传特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improvement of carbon segregation in cast bloom and heredity in hot-rolled bar
In this study, the effect of mechanical soft reduction on carbon segregation in the continuous casting of 300 × 400 mm 42CrMo alloy structural steel blooms was comparatively investigated by adjusting the casting speed, which was systematically optimized through numerical simulation. When the casting speed is 0.60 m · min−1, during the soft reduction process, the central solidification structure of the bloom becomes dense, and carbon segregation is improved. Moreover, the distribution of carbon in the samples before and after rolling was analyzed. Combined with the soft reduction process, the uniformity of carbon across the cross section of the bloom /bar distinctly improved for casting speeds of 0.50 m · min−1, 0.55 m · min−1 and 0.60 m · min−1, this was predominantly reflected in the core areas. The effective segregation length proportion of the bloom and rolled bar is approximately 40%. This phenomenon fully verifies the heredity characteristics of the elements in the rolling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metallurgical Research & Technology
Metallurgical Research & Technology METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.70
自引率
9.10%
发文量
65
审稿时长
4.4 months
期刊介绍: Metallurgical Research and Technology (MRT) is a peer-reviewed bi-monthly journal publishing original high-quality research papers in areas ranging from process metallurgy to metal product properties and applications of ferrous and non-ferrous metals and alloys, including light-metals. It covers also the materials involved in the metal processing as ores, refractories and slags. The journal is listed in the citation index Web of Science and has an Impact Factor. It is highly concerned by the technological innovation as a support of the metallurgical industry at a time when it has to tackle severe challenges like energy, raw materials, sustainability, environment... Strengthening and enhancing the dialogue between science and industry is at the heart of the scope of MRT. This is why it welcomes manuscripts focusing on industrial practice, as well as basic metallurgical knowledge or review articles.
期刊最新文献
Bend forming of aluminum alloy integral panel: a review Kinetic and mechanical properties of boronized AISI 1020 steel with Baybora-2 powder The method of reducing energy consumption in large blast furnace smelting by increasing top pressure Distribution behavior and deportation of arsenic in copper top-blown smelting process Effect of slag properties and non-uniform bottom blowing gas supply mode on fluid flow and mixing behavior in converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1