评估三个不同气候区的森林二氧化碳通量,包括婆罗洲、马来西亚和日本的伊洛莫特和北海道

Shohei Nomura, H. Mukai, Y. Terao, K. Takagi, M. Mohamad, M. F. Jahaya
{"title":"评估三个不同气候区的森林二氧化碳通量,包括婆罗洲、马来西亚和日本的伊洛莫特和北海道","authors":"Shohei Nomura, H. Mukai, Y. Terao, K. Takagi, M. Mohamad, M. F. Jahaya","doi":"10.1080/16000889.2018.1426316","DOIUrl":null,"url":null,"abstract":"Abstract Evaluation of carbon dioxide (CO2) sinks in forest areas of East and Southeast Asia (especially tropical regions) is important for assessing CO2 budgets at the regional scale. To evaluate the CO2 flux of large forest areas, we collected vertical CO2 profiles over the forest using a CO2 sonde and measured surface CO2 concentrations around the forest using continuous CO2 measurement equipment. These observations were performed over a typical northern forest (Hokkaido) in Japan, a subtropical forest island (Iriomote Island) in Japan, and a tropical forest in Borneo Island. We detected the differences in CO2 vertical profiles between dawn and daytime, and at the upwind and downwind sites of the forests with the observational results from the CO2 sonde. We also clarified that CO2 concentrations during daytime at the downwind sites (affected by the forest) were systematically lower than those at the upwind sites (not affected by the forest). In contrast, CO2 concentrations during dawn at the downwind sites were larger than those at the upwind site. We estimated the CO2 fluxes (μmol m−2 s−1) at dawn and daytime of the forests from these observational results. The CO2 fluxes of Borneo’s forest were very large (16.5 and −37.7 at dawn and daytime, respectively), whereas the CO2 fluxes of the forests in Hokkaido and Iriomote were lower (3.9 to 11.8 at dawn and −11.8 to −15.0 at daytime). These evaluated values were consistent with fluxes measured by the eddy-covariance method in the same region. Thus, use of the CO2 sonde to collect observations of CO2 vertical profiles was considered to be an effective method to verify CO2 absorption and emission in large forest areas. This method can also be used to evaluate dynamic CO2 absorption and emission processes in tropical forests.","PeriodicalId":22320,"journal":{"name":"Tellus B: Chemical and Physical Meteorology","volume":"40 1","pages":"1 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaluation of forest CO2 fluxes from sonde measurements in three different climatological areas including Borneo, Malaysia, and Iriomote and Hokkaido, Japan\",\"authors\":\"Shohei Nomura, H. Mukai, Y. Terao, K. Takagi, M. Mohamad, M. F. Jahaya\",\"doi\":\"10.1080/16000889.2018.1426316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Evaluation of carbon dioxide (CO2) sinks in forest areas of East and Southeast Asia (especially tropical regions) is important for assessing CO2 budgets at the regional scale. To evaluate the CO2 flux of large forest areas, we collected vertical CO2 profiles over the forest using a CO2 sonde and measured surface CO2 concentrations around the forest using continuous CO2 measurement equipment. These observations were performed over a typical northern forest (Hokkaido) in Japan, a subtropical forest island (Iriomote Island) in Japan, and a tropical forest in Borneo Island. We detected the differences in CO2 vertical profiles between dawn and daytime, and at the upwind and downwind sites of the forests with the observational results from the CO2 sonde. We also clarified that CO2 concentrations during daytime at the downwind sites (affected by the forest) were systematically lower than those at the upwind sites (not affected by the forest). In contrast, CO2 concentrations during dawn at the downwind sites were larger than those at the upwind site. We estimated the CO2 fluxes (μmol m−2 s−1) at dawn and daytime of the forests from these observational results. The CO2 fluxes of Borneo’s forest were very large (16.5 and −37.7 at dawn and daytime, respectively), whereas the CO2 fluxes of the forests in Hokkaido and Iriomote were lower (3.9 to 11.8 at dawn and −11.8 to −15.0 at daytime). These evaluated values were consistent with fluxes measured by the eddy-covariance method in the same region. Thus, use of the CO2 sonde to collect observations of CO2 vertical profiles was considered to be an effective method to verify CO2 absorption and emission in large forest areas. This method can also be used to evaluate dynamic CO2 absorption and emission processes in tropical forests.\",\"PeriodicalId\":22320,\"journal\":{\"name\":\"Tellus B: Chemical and Physical Meteorology\",\"volume\":\"40 1\",\"pages\":\"1 - 19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tellus B: Chemical and Physical Meteorology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/16000889.2018.1426316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus B: Chemical and Physical Meteorology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/16000889.2018.1426316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

东亚和东南亚森林地区(特别是热带地区)二氧化碳汇的评估对于评估区域尺度上的二氧化碳收支具有重要意义。为了评估大型森林地区的CO2通量,我们使用CO2探空仪收集了森林上空的垂直CO2剖面,并使用连续CO2测量设备测量了森林周围的表面CO2浓度。这些观测是在日本一个典型的北部森林(北海道)、日本一个亚热带森林岛(Iriomote岛)和婆罗洲岛一个热带森林上进行的。利用CO2探空仪的观测结果,检测了森林清晨和白天、上风向和下风向CO2垂直剖面的差异。我们还澄清了受森林影响的下风站点白天的CO2浓度系统性地低于不受森林影响的上风站点。相反,在拂晓时,下风站点的CO2浓度大于逆风站点。我们根据这些观测结果估算了森林在黎明和白天的CO2通量(μmol m−2 s−1)。婆罗洲森林的CO2通量非常大(黎明和白天分别为16.5和- 37.7),而北海道和伊里奥莫特森林的CO2通量较低(黎明3.9至11.8,白天- 11.8至- 15.0)。这些估计值与涡旋协方差法在同一区域测量的通量一致。因此,利用CO2探空仪收集CO2垂直剖面观测资料被认为是验证大面积森林地区CO2吸收和排放的有效方法。该方法还可用于评价热带森林的动态CO2吸收和排放过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of forest CO2 fluxes from sonde measurements in three different climatological areas including Borneo, Malaysia, and Iriomote and Hokkaido, Japan
Abstract Evaluation of carbon dioxide (CO2) sinks in forest areas of East and Southeast Asia (especially tropical regions) is important for assessing CO2 budgets at the regional scale. To evaluate the CO2 flux of large forest areas, we collected vertical CO2 profiles over the forest using a CO2 sonde and measured surface CO2 concentrations around the forest using continuous CO2 measurement equipment. These observations were performed over a typical northern forest (Hokkaido) in Japan, a subtropical forest island (Iriomote Island) in Japan, and a tropical forest in Borneo Island. We detected the differences in CO2 vertical profiles between dawn and daytime, and at the upwind and downwind sites of the forests with the observational results from the CO2 sonde. We also clarified that CO2 concentrations during daytime at the downwind sites (affected by the forest) were systematically lower than those at the upwind sites (not affected by the forest). In contrast, CO2 concentrations during dawn at the downwind sites were larger than those at the upwind site. We estimated the CO2 fluxes (μmol m−2 s−1) at dawn and daytime of the forests from these observational results. The CO2 fluxes of Borneo’s forest were very large (16.5 and −37.7 at dawn and daytime, respectively), whereas the CO2 fluxes of the forests in Hokkaido and Iriomote were lower (3.9 to 11.8 at dawn and −11.8 to −15.0 at daytime). These evaluated values were consistent with fluxes measured by the eddy-covariance method in the same region. Thus, use of the CO2 sonde to collect observations of CO2 vertical profiles was considered to be an effective method to verify CO2 absorption and emission in large forest areas. This method can also be used to evaluate dynamic CO2 absorption and emission processes in tropical forests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning Approach to Investigating the Relative Importance of Meteorological and Aerosol-Related Parameters in Determining Cloud Microphysical Properties Dimensionless Parameterizations of Air-Sea CO2 Gas Transfer Velocity on Surface Waves Transport of Mineral Dust Into the Arctic in Two Reanalysis Datasets of Atmospheric Composition The Climatic Role of Interactive Leaf Phenology in the Vegetation-Atmosphere System of Radiative-Convective Equilibrium Storm-Resolving Simulations Tropical and Boreal Forest – Atmosphere Interactions: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1