Maria Fernanda Felippe Silva, João Vítor Felippe Silva, H. R. Favarim, C. Campos
{"title":"苯酚-甲醛和ZnO纳米颗粒制备的OSB的物理力学性能和传热分析","authors":"Maria Fernanda Felippe Silva, João Vítor Felippe Silva, H. R. Favarim, C. Campos","doi":"10.4067/s0718-221x2023000100403","DOIUrl":null,"url":null,"abstract":"Oriented Strand Board is a structural wood composite with applications that require good physical and mechanical performance. The addition of ZnO nanoparticles is an alternative that has been studied in order to improve the properties of Oriented Strand Board panels. However, there is no information about its effect Oriented Strand Board. The aim of this work was to evaluate the influence of the addition of zinc oxide nanoparticles in two different percentages (0,25 % and 0,50 %) on the physical-mechanical properties of Oriented Strand Board panels produced with phenol-formaldehyde resin and on the heat transfer during hot-pressing. Oriented Strand Board panels were produced and tested according to European Standards. The addition of ZnO nanoparticles improved the dimensional stability of the panel, reducing its thickness swelling, and also increased the screw withdraw strength. The heat transfer during hot-pressing increased the temperature more quickly on boards with nanoparticles addition; on the other hand the final temperature of the control treatment was higher.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"122 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical-mechanical properties and heat transfer analysis of OSB produced with phenol-formaldehyde and ZnO nanoparticles addition\",\"authors\":\"Maria Fernanda Felippe Silva, João Vítor Felippe Silva, H. R. Favarim, C. Campos\",\"doi\":\"10.4067/s0718-221x2023000100403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oriented Strand Board is a structural wood composite with applications that require good physical and mechanical performance. The addition of ZnO nanoparticles is an alternative that has been studied in order to improve the properties of Oriented Strand Board panels. However, there is no information about its effect Oriented Strand Board. The aim of this work was to evaluate the influence of the addition of zinc oxide nanoparticles in two different percentages (0,25 % and 0,50 %) on the physical-mechanical properties of Oriented Strand Board panels produced with phenol-formaldehyde resin and on the heat transfer during hot-pressing. Oriented Strand Board panels were produced and tested according to European Standards. The addition of ZnO nanoparticles improved the dimensional stability of the panel, reducing its thickness swelling, and also increased the screw withdraw strength. The heat transfer during hot-pressing increased the temperature more quickly on boards with nanoparticles addition; on the other hand the final temperature of the control treatment was higher.\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2023000100403\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2023000100403","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
Physical-mechanical properties and heat transfer analysis of OSB produced with phenol-formaldehyde and ZnO nanoparticles addition
Oriented Strand Board is a structural wood composite with applications that require good physical and mechanical performance. The addition of ZnO nanoparticles is an alternative that has been studied in order to improve the properties of Oriented Strand Board panels. However, there is no information about its effect Oriented Strand Board. The aim of this work was to evaluate the influence of the addition of zinc oxide nanoparticles in two different percentages (0,25 % and 0,50 %) on the physical-mechanical properties of Oriented Strand Board panels produced with phenol-formaldehyde resin and on the heat transfer during hot-pressing. Oriented Strand Board panels were produced and tested according to European Standards. The addition of ZnO nanoparticles improved the dimensional stability of the panel, reducing its thickness swelling, and also increased the screw withdraw strength. The heat transfer during hot-pressing increased the temperature more quickly on boards with nanoparticles addition; on the other hand the final temperature of the control treatment was higher.
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.