用于高效二氧化碳还原的对嵌段金属卤化物电催化剂的最新进展

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2023-08-05 DOI:10.1016/j.esci.2023.100172
Fanrong Chen , Ze-Cheng Yao , Zhen-Hua Lyu , Jiaju Fu , Xiaoling Zhang , Jin-Song Hu
{"title":"用于高效二氧化碳还原的对嵌段金属卤化物电催化剂的最新进展","authors":"Fanrong Chen ,&nbsp;Ze-Cheng Yao ,&nbsp;Zhen-Hua Lyu ,&nbsp;Jiaju Fu ,&nbsp;Xiaoling Zhang ,&nbsp;Jin-Song Hu","doi":"10.1016/j.esci.2023.100172","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) to high-value fuels and chemicals offers a promising conversion technology for achieving sustainable carbon cycles. In recent years, although great efforts have been made to develop high-efficiency ECR catalysts, challenges remain in achieving high activity and long durability simultaneously. Taking advantage of the adjustable structure, tunable component, and the M–Ch (M ​= ​Sn, In, Bi, etc., Ch ​= ​S, Se, Te) covalent bonds stabilized metal centers, the p-block metal chalcogenides (PMC) based electrocatalysts have shown great potential in converting CO<sub>2</sub> into CO or formates. In addition, the unique p-block electron structure can suppress the competitive hydrogen evolution reaction and enhance the adsorption of ECR intermediates. Seeking to systematically understand the structure–activity relationship of PMC-based ECR catalysts, this review summarizes the recent advances in designing PMC electrocatalysts for CO<sub>2</sub> reduction based on the fundamental aspects of heterogeneous ECR process, including advanced strategies for optimizing the intrinsic activity and improving the loading density of catalytic sites, constructing highly stable catalysts, and tuning product selectivities. Subsequently, we outline the challenges and perspectives on developing high-performance PMC ECR catalysts for practical applications.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100172"},"PeriodicalIF":42.9000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001106/pdfft?md5=2b3f2a1af817a8f83d1c555b2d3b0c80&pid=1-s2.0-S2667141723001106-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction\",\"authors\":\"Fanrong Chen ,&nbsp;Ze-Cheng Yao ,&nbsp;Zhen-Hua Lyu ,&nbsp;Jiaju Fu ,&nbsp;Xiaoling Zhang ,&nbsp;Jin-Song Hu\",\"doi\":\"10.1016/j.esci.2023.100172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrocatalytic CO<sub>2</sub> reduction (ECR) to high-value fuels and chemicals offers a promising conversion technology for achieving sustainable carbon cycles. In recent years, although great efforts have been made to develop high-efficiency ECR catalysts, challenges remain in achieving high activity and long durability simultaneously. Taking advantage of the adjustable structure, tunable component, and the M–Ch (M ​= ​Sn, In, Bi, etc., Ch ​= ​S, Se, Te) covalent bonds stabilized metal centers, the p-block metal chalcogenides (PMC) based electrocatalysts have shown great potential in converting CO<sub>2</sub> into CO or formates. In addition, the unique p-block electron structure can suppress the competitive hydrogen evolution reaction and enhance the adsorption of ECR intermediates. Seeking to systematically understand the structure–activity relationship of PMC-based ECR catalysts, this review summarizes the recent advances in designing PMC electrocatalysts for CO<sub>2</sub> reduction based on the fundamental aspects of heterogeneous ECR process, including advanced strategies for optimizing the intrinsic activity and improving the loading density of catalytic sites, constructing highly stable catalysts, and tuning product selectivities. Subsequently, we outline the challenges and perspectives on developing high-performance PMC ECR catalysts for practical applications.</p></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"4 2\",\"pages\":\"Article 100172\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001106/pdfft?md5=2b3f2a1af817a8f83d1c555b2d3b0c80&pid=1-s2.0-S2667141723001106-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141723001106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

电催化二氧化碳还原(ECR)将二氧化碳转化为高价值燃料和化学品,为实现可持续碳循环提供了一种前景广阔的转化技术。近年来,尽管人们在开发高效 ECR 催化剂方面做出了巨大努力,但在同时实现高活性和长耐久性方面仍然存在挑战。利用可调结构、可调组分和 M-Ch(M = Sn、In、Bi 等,Ch = S、Se、Te)共价键稳定金属中心的优势,基于对嵌段金属瑀(PMC)的电催化剂在将 CO2 转化为 CO 或甲酸盐方面显示出巨大的潜力。此外,独特的对嵌段电子结构还能抑制竞争性氢进化反应,并增强对 ECR 中间产物的吸附。为了系统地了解基于 PMC 的 ECR 催化剂的结构-活性关系,本综述总结了基于异相 ECR 过程基本方面设计用于 CO2 还原的 PMC 电催化剂的最新进展,包括优化催化位点的内在活性和提高负载密度、构建高稳定性催化剂以及调整产物选择性的先进策略。随后,我们概述了为实际应用开发高性能 PMC ECR 催化剂所面临的挑战和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent advances in p-block metal chalcogenide electrocatalysts for high-efficiency CO2 reduction

Electrocatalytic CO2 reduction (ECR) to high-value fuels and chemicals offers a promising conversion technology for achieving sustainable carbon cycles. In recent years, although great efforts have been made to develop high-efficiency ECR catalysts, challenges remain in achieving high activity and long durability simultaneously. Taking advantage of the adjustable structure, tunable component, and the M–Ch (M ​= ​Sn, In, Bi, etc., Ch ​= ​S, Se, Te) covalent bonds stabilized metal centers, the p-block metal chalcogenides (PMC) based electrocatalysts have shown great potential in converting CO2 into CO or formates. In addition, the unique p-block electron structure can suppress the competitive hydrogen evolution reaction and enhance the adsorption of ECR intermediates. Seeking to systematically understand the structure–activity relationship of PMC-based ECR catalysts, this review summarizes the recent advances in designing PMC electrocatalysts for CO2 reduction based on the fundamental aspects of heterogeneous ECR process, including advanced strategies for optimizing the intrinsic activity and improving the loading density of catalytic sites, constructing highly stable catalysts, and tuning product selectivities. Subsequently, we outline the challenges and perspectives on developing high-performance PMC ECR catalysts for practical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1