{"title":"血小板有氧代谢:新视角","authors":"S. Ravera, I. Panfoli","doi":"10.20517/2572-8180.2019.06","DOIUrl":null,"url":null,"abstract":"Although the role of platelets in hemostasis and thrombotic disorders as well as their contribution to inflammation are known, recent studies support the notion that much remains to be learned about platelet bioenergetics. Recent data suggest that platelets possess extra-mitochondrial oxidative phosphorylation (OXPHOS), which could represent one of sources of the chemical energy necessary for the prompt platelets activation. However, the extra-mitochondrial OXPHOS can play both beneficial and pathological roles, since the OXPHOS is the principal responsible of oxidative stress generation. For this reason, several authors evaluated the effects of polyphenols and other antioxidants on the modulation of the platelets oxidative stress production. In conclusion, we believe that a better understanding of platelet oxidative metabolism would allow a deeper knowledge of their physiology and the designing novel treatments targeting the role of platelets in many human diseases.","PeriodicalId":17398,"journal":{"name":"Journal of Unexplored Medical Data","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Platelet aerobic metabolism: new perspectives\",\"authors\":\"S. Ravera, I. Panfoli\",\"doi\":\"10.20517/2572-8180.2019.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although the role of platelets in hemostasis and thrombotic disorders as well as their contribution to inflammation are known, recent studies support the notion that much remains to be learned about platelet bioenergetics. Recent data suggest that platelets possess extra-mitochondrial oxidative phosphorylation (OXPHOS), which could represent one of sources of the chemical energy necessary for the prompt platelets activation. However, the extra-mitochondrial OXPHOS can play both beneficial and pathological roles, since the OXPHOS is the principal responsible of oxidative stress generation. For this reason, several authors evaluated the effects of polyphenols and other antioxidants on the modulation of the platelets oxidative stress production. In conclusion, we believe that a better understanding of platelet oxidative metabolism would allow a deeper knowledge of their physiology and the designing novel treatments targeting the role of platelets in many human diseases.\",\"PeriodicalId\":17398,\"journal\":{\"name\":\"Journal of Unexplored Medical Data\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Unexplored Medical Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/2572-8180.2019.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Unexplored Medical Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/2572-8180.2019.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Although the role of platelets in hemostasis and thrombotic disorders as well as their contribution to inflammation are known, recent studies support the notion that much remains to be learned about platelet bioenergetics. Recent data suggest that platelets possess extra-mitochondrial oxidative phosphorylation (OXPHOS), which could represent one of sources of the chemical energy necessary for the prompt platelets activation. However, the extra-mitochondrial OXPHOS can play both beneficial and pathological roles, since the OXPHOS is the principal responsible of oxidative stress generation. For this reason, several authors evaluated the effects of polyphenols and other antioxidants on the modulation of the platelets oxidative stress production. In conclusion, we believe that a better understanding of platelet oxidative metabolism would allow a deeper knowledge of their physiology and the designing novel treatments targeting the role of platelets in many human diseases.