{"title":"当代住宅立面对防爆被动防御要求的响应分析——以大马士革住宅楼立面为例","authors":"H. Alhawasli, D. Kh","doi":"10.4172/2168-9717.1000213","DOIUrl":null,"url":null,"abstract":"Due to the fact that a building resistance against explosion waves depends on a range of factors, including the shape and form of the building, number of opens and building materials used in construction as direct factors, distance and number of barriers between building and the location of the explosion as indirect factors. And because external cover of the building as the most important line of defense to protect against external threats, with taken into account that explosion waves can damage the building through the pores in the external cover or destroying the outer shell of the building. It is important to design resistant building facades in front of explosion consequences. The main goal of this paper is to assess the responsiveness of modern architectural facade to the passive defense requirements to be observed a way that if an explosion occurred outside the building and on the surface of the earth, the waves of pressure cause the lowest damage available to the exterior surfaces of buildings. In the studied model we note the following weaknesses: the inability to take advantage of the green element in the site, the misuse of some glass decorative elements in the balconies, the excessive opening in the facade in general and the use of the large opening without dividing in the stair space. Entrances are gone deep inside the facade where the advanced entrances are recommended to maintain the possibility of exit in the event of ruin. In the end, more dynamic shape may be better.","PeriodicalId":15092,"journal":{"name":"Journal of Architectural Engineering Technology","volume":"21 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Response Analysis of Residential Contemporary Facades to the Passive Defense Requirements for Explosion Resistance Case Study: Residential Building Facade in Damascus\",\"authors\":\"H. Alhawasli, D. Kh\",\"doi\":\"10.4172/2168-9717.1000213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the fact that a building resistance against explosion waves depends on a range of factors, including the shape and form of the building, number of opens and building materials used in construction as direct factors, distance and number of barriers between building and the location of the explosion as indirect factors. And because external cover of the building as the most important line of defense to protect against external threats, with taken into account that explosion waves can damage the building through the pores in the external cover or destroying the outer shell of the building. It is important to design resistant building facades in front of explosion consequences. The main goal of this paper is to assess the responsiveness of modern architectural facade to the passive defense requirements to be observed a way that if an explosion occurred outside the building and on the surface of the earth, the waves of pressure cause the lowest damage available to the exterior surfaces of buildings. In the studied model we note the following weaknesses: the inability to take advantage of the green element in the site, the misuse of some glass decorative elements in the balconies, the excessive opening in the facade in general and the use of the large opening without dividing in the stair space. Entrances are gone deep inside the facade where the advanced entrances are recommended to maintain the possibility of exit in the event of ruin. In the end, more dynamic shape may be better.\",\"PeriodicalId\":15092,\"journal\":{\"name\":\"Journal of Architectural Engineering Technology\",\"volume\":\"21 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Architectural Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9717.1000213\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Architectural Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9717.1000213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Response Analysis of Residential Contemporary Facades to the Passive Defense Requirements for Explosion Resistance Case Study: Residential Building Facade in Damascus
Due to the fact that a building resistance against explosion waves depends on a range of factors, including the shape and form of the building, number of opens and building materials used in construction as direct factors, distance and number of barriers between building and the location of the explosion as indirect factors. And because external cover of the building as the most important line of defense to protect against external threats, with taken into account that explosion waves can damage the building through the pores in the external cover or destroying the outer shell of the building. It is important to design resistant building facades in front of explosion consequences. The main goal of this paper is to assess the responsiveness of modern architectural facade to the passive defense requirements to be observed a way that if an explosion occurred outside the building and on the surface of the earth, the waves of pressure cause the lowest damage available to the exterior surfaces of buildings. In the studied model we note the following weaknesses: the inability to take advantage of the green element in the site, the misuse of some glass decorative elements in the balconies, the excessive opening in the facade in general and the use of the large opening without dividing in the stair space. Entrances are gone deep inside the facade where the advanced entrances are recommended to maintain the possibility of exit in the event of ruin. In the end, more dynamic shape may be better.