Zhuo Zheng, Wenqi Ren, Xiaochun Cao, Tao Wang, Xiuyi Jia
{"title":"基于协同双边学习的超高清图像HDR重建","authors":"Zhuo Zheng, Wenqi Ren, Xiaochun Cao, Tao Wang, Xiuyi Jia","doi":"10.1109/ICCV48922.2021.00441","DOIUrl":null,"url":null,"abstract":"Existing single image high dynamic range (HDR) reconstruction methods attempt to expand the range of illuminance. They are not effective in generating plausible textures and colors in the reconstructed results, especially for high-density pixels in ultra-high-definition (UHD) images. To address these problems, we propose a new HDR reconstruction network for UHD images by collaboratively learning color and texture details. First, we propose a dual-path network to extract the content and chromatic features at a reduced resolution of the low dynamic range (LDR) input. These two types of features are used to fit bilateral-space affine models for real-time HDR reconstruction. To extract the main data structure of the LDR input, we propose to use 3D Tucker decomposition and reconstruction to prevent pseudo edges and noise amplification in the learned bilateral grid. As a result, the high-quality content and chromatic features can be reconstructed capitalized on guided bilateral upsampling. Finally, we fuse these two full-resolution feature maps into the HDR reconstructed results. Our proposed method can achieve real-time processing for UHD images (about 160 fps). Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art HDR reconstruction approaches on public benchmarks and real-world UHD images.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"48 1","pages":"4429-4438"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Ultra-High-Definition Image HDR Reconstruction via Collaborative Bilateral Learning\",\"authors\":\"Zhuo Zheng, Wenqi Ren, Xiaochun Cao, Tao Wang, Xiuyi Jia\",\"doi\":\"10.1109/ICCV48922.2021.00441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing single image high dynamic range (HDR) reconstruction methods attempt to expand the range of illuminance. They are not effective in generating plausible textures and colors in the reconstructed results, especially for high-density pixels in ultra-high-definition (UHD) images. To address these problems, we propose a new HDR reconstruction network for UHD images by collaboratively learning color and texture details. First, we propose a dual-path network to extract the content and chromatic features at a reduced resolution of the low dynamic range (LDR) input. These two types of features are used to fit bilateral-space affine models for real-time HDR reconstruction. To extract the main data structure of the LDR input, we propose to use 3D Tucker decomposition and reconstruction to prevent pseudo edges and noise amplification in the learned bilateral grid. As a result, the high-quality content and chromatic features can be reconstructed capitalized on guided bilateral upsampling. Finally, we fuse these two full-resolution feature maps into the HDR reconstructed results. Our proposed method can achieve real-time processing for UHD images (about 160 fps). Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art HDR reconstruction approaches on public benchmarks and real-world UHD images.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"48 1\",\"pages\":\"4429-4438\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ultra-High-Definition Image HDR Reconstruction via Collaborative Bilateral Learning
Existing single image high dynamic range (HDR) reconstruction methods attempt to expand the range of illuminance. They are not effective in generating plausible textures and colors in the reconstructed results, especially for high-density pixels in ultra-high-definition (UHD) images. To address these problems, we propose a new HDR reconstruction network for UHD images by collaboratively learning color and texture details. First, we propose a dual-path network to extract the content and chromatic features at a reduced resolution of the low dynamic range (LDR) input. These two types of features are used to fit bilateral-space affine models for real-time HDR reconstruction. To extract the main data structure of the LDR input, we propose to use 3D Tucker decomposition and reconstruction to prevent pseudo edges and noise amplification in the learned bilateral grid. As a result, the high-quality content and chromatic features can be reconstructed capitalized on guided bilateral upsampling. Finally, we fuse these two full-resolution feature maps into the HDR reconstructed results. Our proposed method can achieve real-time processing for UHD images (about 160 fps). Experimental results demonstrate that the proposed algorithm performs favorably against the state-of-the-art HDR reconstruction approaches on public benchmarks and real-world UHD images.