{"title":"基于深度神经网络的多模光纤光传播预测","authors":"Pengfei Fan, Liang Deng, Lei Su","doi":"10.1109/IAEAC.2018.8577930","DOIUrl":null,"url":null,"abstract":"This work demonstrates a computational method for predicting the light propagation through a single multimode fiber using a deep neural network. The experiment for gathering training and testing data is performed with a digital micro-mirror device that enables the spatial light modulation. The modulated patterns on the device and the captured intensity-only images by the camera form the aligned data pairs. This sufficiently-trained deep neural network frame has very excellent performance for directly inferring the intensity-only output delivered though a multimode fiber. The model is validated by three standards: the mean squared error (MSE), the correlation coefficient (corr) and the structural similarity index (SSIM).","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"36 1","pages":"1080-1084"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Light Propagation Prediction through Multimode Optical Fibers with a Deep Neural Network\",\"authors\":\"Pengfei Fan, Liang Deng, Lei Su\",\"doi\":\"10.1109/IAEAC.2018.8577930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work demonstrates a computational method for predicting the light propagation through a single multimode fiber using a deep neural network. The experiment for gathering training and testing data is performed with a digital micro-mirror device that enables the spatial light modulation. The modulated patterns on the device and the captured intensity-only images by the camera form the aligned data pairs. This sufficiently-trained deep neural network frame has very excellent performance for directly inferring the intensity-only output delivered though a multimode fiber. The model is validated by three standards: the mean squared error (MSE), the correlation coefficient (corr) and the structural similarity index (SSIM).\",\"PeriodicalId\":6573,\"journal\":{\"name\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"36 1\",\"pages\":\"1080-1084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC.2018.8577930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Light Propagation Prediction through Multimode Optical Fibers with a Deep Neural Network
This work demonstrates a computational method for predicting the light propagation through a single multimode fiber using a deep neural network. The experiment for gathering training and testing data is performed with a digital micro-mirror device that enables the spatial light modulation. The modulated patterns on the device and the captured intensity-only images by the camera form the aligned data pairs. This sufficiently-trained deep neural network frame has very excellent performance for directly inferring the intensity-only output delivered though a multimode fiber. The model is validated by three standards: the mean squared error (MSE), the correlation coefficient (corr) and the structural similarity index (SSIM).