实验室地震破裂前沿的能量耗散

David S. Kammer, G. Mclaskey
{"title":"实验室地震破裂前沿的能量耗散","authors":"David S. Kammer, G. Mclaskey","doi":"10.3929/ETHZ-B-000488172","DOIUrl":null,"url":null,"abstract":"<p>The energy dissipated during the friction weakening process at the front of an earthquake rupture, which is known as the fracture energy, is a key earthquake property. It directly affects the nucleation, propagation and arrest of earthquake ruptures, and, is therefore related to important questions, including the maximum possible size of earthquakes at a given fault section. However, estimating the fracture energy in the field is a difficult task and current approaches remain limited. In this work, we present near-fault strain measurements of large-scale laboratory earthquakes on a granite fault. The strain measurements present high-frequency fluctuations while the fault is sliding. These strain fluctuations are indicative of rupture fronts that propagate across the entire fault and occasionally reflect at the boundaries. Here, we will characterize these strain fluctuations by applying fracture-mechanics theory. We will demonstrate that the shape and time scales of the strain fluctuations are well described by the proposed analytical solution. We will further show that by fitting the amplitude of the theory to the experimental measurement, we can estimate the local fracture energy. We apply this process to determine the fracture energy for secondary rupture fronts, which appear within the sliding rupture area. The results are consistent with fracture energy estimates from laboratory-earthquake arrest experiments, but are orders of magnitude lower than reported values from small-scale rotary shear friction experiments. We will discuss the implications and potential of these observations.</p>","PeriodicalId":22413,"journal":{"name":"The EGU General Assembly","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy dissipation at the rupture front of laboratory earthquakes\",\"authors\":\"David S. Kammer, G. Mclaskey\",\"doi\":\"10.3929/ETHZ-B-000488172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The energy dissipated during the friction weakening process at the front of an earthquake rupture, which is known as the fracture energy, is a key earthquake property. It directly affects the nucleation, propagation and arrest of earthquake ruptures, and, is therefore related to important questions, including the maximum possible size of earthquakes at a given fault section. However, estimating the fracture energy in the field is a difficult task and current approaches remain limited. In this work, we present near-fault strain measurements of large-scale laboratory earthquakes on a granite fault. The strain measurements present high-frequency fluctuations while the fault is sliding. These strain fluctuations are indicative of rupture fronts that propagate across the entire fault and occasionally reflect at the boundaries. Here, we will characterize these strain fluctuations by applying fracture-mechanics theory. We will demonstrate that the shape and time scales of the strain fluctuations are well described by the proposed analytical solution. We will further show that by fitting the amplitude of the theory to the experimental measurement, we can estimate the local fracture energy. We apply this process to determine the fracture energy for secondary rupture fronts, which appear within the sliding rupture area. The results are consistent with fracture energy estimates from laboratory-earthquake arrest experiments, but are orders of magnitude lower than reported values from small-scale rotary shear friction experiments. We will discuss the implications and potential of these observations.</p>\",\"PeriodicalId\":22413,\"journal\":{\"name\":\"The EGU General Assembly\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The EGU General Assembly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3929/ETHZ-B-000488172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The EGU General Assembly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3929/ETHZ-B-000488172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地震破裂前缘摩擦减弱过程中耗散的能量称为断裂能,是地震的一个重要性质。它直接影响到地震破裂的成核、传播和停止,因此,它与一些重要问题有关,包括在给定断层段上地震的最大可能规模。然而,在现场估计裂缝能是一项艰巨的任务,目前的方法仍然有限。在这项工作中,我们提出了花岗岩断层上大尺度实验室地震的近断层应变测量。当断层滑动时,应变测量值呈现高频波动。这些应变波动表明断裂锋面在整个断层上传播,偶尔在边界处反射。在这里,我们将运用断裂力学理论来描述这些应变波动。我们将证明,所提出的解析解很好地描述了应变波动的形状和时间尺度。我们将进一步证明,通过将理论的振幅拟合到实验测量中,我们可以估计出局部断裂能。我们应用这一过程来确定出现在滑动破裂区内的次级破裂锋面的破裂能。结果与实验室止震实验的断裂能估计一致,但比小规模旋转剪切摩擦实验的报告值低几个数量级。我们将讨论这些观察结果的含义和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy dissipation at the rupture front of laboratory earthquakes

The energy dissipated during the friction weakening process at the front of an earthquake rupture, which is known as the fracture energy, is a key earthquake property. It directly affects the nucleation, propagation and arrest of earthquake ruptures, and, is therefore related to important questions, including the maximum possible size of earthquakes at a given fault section. However, estimating the fracture energy in the field is a difficult task and current approaches remain limited. In this work, we present near-fault strain measurements of large-scale laboratory earthquakes on a granite fault. The strain measurements present high-frequency fluctuations while the fault is sliding. These strain fluctuations are indicative of rupture fronts that propagate across the entire fault and occasionally reflect at the boundaries. Here, we will characterize these strain fluctuations by applying fracture-mechanics theory. We will demonstrate that the shape and time scales of the strain fluctuations are well described by the proposed analytical solution. We will further show that by fitting the amplitude of the theory to the experimental measurement, we can estimate the local fracture energy. We apply this process to determine the fracture energy for secondary rupture fronts, which appear within the sliding rupture area. The results are consistent with fracture energy estimates from laboratory-earthquake arrest experiments, but are orders of magnitude lower than reported values from small-scale rotary shear friction experiments. We will discuss the implications and potential of these observations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GROOPS: An open-source software package for GNSS processing and gravity field recovery Global flood monitoring with GRACE/GRACE-FO Statistical relations between in-situ measured Bz component and thermospheric density variations Current status of project SWEETS: Estimating thermospheric neutral mass densities from satellite data at various altitudes Blast vibration reduction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1