Dawei Cao, Zhiying Qin, R. Liu, Yang Yang, Dexing Zhong
{"title":"基于车辆通信的追尾碰撞预警算法*","authors":"Dawei Cao, Zhiying Qin, R. Liu, Yang Yang, Dexing Zhong","doi":"10.1109/ITSC.2019.8917505","DOIUrl":null,"url":null,"abstract":"With the combination of vehicle information and communication technology, there is a new opportunity to solve the problem of rear-end collision in the field of transportation. Based on 802.11p, vehicles equipped with the WAVE (Wireless access in Vehicular Environment) standard can communicate each other in real time. When an accident occurs, vehicles within range can receive warning information quickly through inter-vehicle communication. The drivers will have enough time to calmly brake to stop and also reduce the risk of secondary collision. In order to prevent secondary collisions, we propose an algorithm that includes vehicle accident identification and rear-end collision warning. If it is calculated that the vehicle will collide, the system will notify the driver to take brake. The algorithm is based on the historical path of the vehicle and is primarily used for curved road conditions. The results show that the algorithm has good performance and the false alarm rate does not exceed 1%.","PeriodicalId":6717,"journal":{"name":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","volume":"179 1","pages":"3367-3372"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Rear-end Collision Warning Algorithm based on Vehicular Communication*\",\"authors\":\"Dawei Cao, Zhiying Qin, R. Liu, Yang Yang, Dexing Zhong\",\"doi\":\"10.1109/ITSC.2019.8917505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the combination of vehicle information and communication technology, there is a new opportunity to solve the problem of rear-end collision in the field of transportation. Based on 802.11p, vehicles equipped with the WAVE (Wireless access in Vehicular Environment) standard can communicate each other in real time. When an accident occurs, vehicles within range can receive warning information quickly through inter-vehicle communication. The drivers will have enough time to calmly brake to stop and also reduce the risk of secondary collision. In order to prevent secondary collisions, we propose an algorithm that includes vehicle accident identification and rear-end collision warning. If it is calculated that the vehicle will collide, the system will notify the driver to take brake. The algorithm is based on the historical path of the vehicle and is primarily used for curved road conditions. The results show that the algorithm has good performance and the false alarm rate does not exceed 1%.\",\"PeriodicalId\":6717,\"journal\":{\"name\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"volume\":\"179 1\",\"pages\":\"3367-3372\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Intelligent Transportation Systems Conference (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2019.8917505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Intelligent Transportation Systems Conference (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2019.8917505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Rear-end Collision Warning Algorithm based on Vehicular Communication*
With the combination of vehicle information and communication technology, there is a new opportunity to solve the problem of rear-end collision in the field of transportation. Based on 802.11p, vehicles equipped with the WAVE (Wireless access in Vehicular Environment) standard can communicate each other in real time. When an accident occurs, vehicles within range can receive warning information quickly through inter-vehicle communication. The drivers will have enough time to calmly brake to stop and also reduce the risk of secondary collision. In order to prevent secondary collisions, we propose an algorithm that includes vehicle accident identification and rear-end collision warning. If it is calculated that the vehicle will collide, the system will notify the driver to take brake. The algorithm is based on the historical path of the vehicle and is primarily used for curved road conditions. The results show that the algorithm has good performance and the false alarm rate does not exceed 1%.