R. Dhivya, J. Ranjani, J. Rajendhran, J. Mayandi, J. Annaraj
{"title":"pH触发PMMA-AA包被ZnO纳米颗粒释放姜黄素的抗胃癌治疗","authors":"R. Dhivya, J. Ranjani, J. Rajendhran, J. Mayandi, J. Annaraj","doi":"10.4172/2169-0022.1000414","DOIUrl":null,"url":null,"abstract":"The curcumin loaded PMMA-AA/ZnO nanocomposite potentially inhibited the growth of AGS cancer tumour in male Swiss albino mouse, which showed a promising targeted cancer therapy. Interestingly the given bio-nanocomposite was rapidly cleared from the organs with negligible exhibition of toxicity. From the obtained results it is understood that the apoptosis has been occurred through mitochondrial disruption-mediated pathway. Also these nanomaterials could efficiently hinder the Go/G1 transition along with cycle progression at S-phase transition due to the radiation-induced DNA damage. These findings declared that the auspicious candidate, curcumin could be successfully delivered into the target by the polymer encapsulated ZnO NPs and exhibited a potent activity against gastric cancer cells at molecular and cellular levels as well as cell proliferation in a panel of tumour cells","PeriodicalId":16326,"journal":{"name":"Journal of Material Sciences & Engineering","volume":"27 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"pH Triggered Curcumin Release from PMMA-AA Coated ZnO Nanoparticles for Excellent Anti-Gastric Cancer Therapy\",\"authors\":\"R. Dhivya, J. Ranjani, J. Rajendhran, J. Mayandi, J. Annaraj\",\"doi\":\"10.4172/2169-0022.1000414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The curcumin loaded PMMA-AA/ZnO nanocomposite potentially inhibited the growth of AGS cancer tumour in male Swiss albino mouse, which showed a promising targeted cancer therapy. Interestingly the given bio-nanocomposite was rapidly cleared from the organs with negligible exhibition of toxicity. From the obtained results it is understood that the apoptosis has been occurred through mitochondrial disruption-mediated pathway. Also these nanomaterials could efficiently hinder the Go/G1 transition along with cycle progression at S-phase transition due to the radiation-induced DNA damage. These findings declared that the auspicious candidate, curcumin could be successfully delivered into the target by the polymer encapsulated ZnO NPs and exhibited a potent activity against gastric cancer cells at molecular and cellular levels as well as cell proliferation in a panel of tumour cells\",\"PeriodicalId\":16326,\"journal\":{\"name\":\"Journal of Material Sciences & Engineering\",\"volume\":\"27 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Material Sciences & Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2169-0022.1000414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Sciences & Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2169-0022.1000414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
pH Triggered Curcumin Release from PMMA-AA Coated ZnO Nanoparticles for Excellent Anti-Gastric Cancer Therapy
The curcumin loaded PMMA-AA/ZnO nanocomposite potentially inhibited the growth of AGS cancer tumour in male Swiss albino mouse, which showed a promising targeted cancer therapy. Interestingly the given bio-nanocomposite was rapidly cleared from the organs with negligible exhibition of toxicity. From the obtained results it is understood that the apoptosis has been occurred through mitochondrial disruption-mediated pathway. Also these nanomaterials could efficiently hinder the Go/G1 transition along with cycle progression at S-phase transition due to the radiation-induced DNA damage. These findings declared that the auspicious candidate, curcumin could be successfully delivered into the target by the polymer encapsulated ZnO NPs and exhibited a potent activity against gastric cancer cells at molecular and cellular levels as well as cell proliferation in a panel of tumour cells