{"title":"风力涡轮机叶片柔性后缘演示器的设计与实验室试验","authors":"M. Pohl, J. Riemenschneider","doi":"10.1177/0309524X221126743","DOIUrl":null,"url":null,"abstract":"To increase the power yield, wind turbines have significantly grown in the last decades. Today, this growth is more and more limited by the weight of the structures and fatigue loads. To compensate these loads, especially flapwise root bending moments, trailing edge flaps can be used. They can change the lift of the blade with little delay to equalize the aerodynamic lift and by this reduce the fatigue amplitude. Such a trailing edge flap has been designed, developed, built and experimentally tested. It uses a flexible, morphing design to seal the entire mechanics against environmental influences, such as rain, dust, or insects. Therefore a design made from glass fiber reinforced plastics in combination with elastomer materials is used. In this paper the design process from the concept to two consecutive demonstrators is presented. Both are tested in the laboratory for their morphing characteristics.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"15 1","pages":"283 - 298"},"PeriodicalIF":1.5000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and laboratory tests of flexible trailing edge demonstrators for wind turbine blades\",\"authors\":\"M. Pohl, J. Riemenschneider\",\"doi\":\"10.1177/0309524X221126743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To increase the power yield, wind turbines have significantly grown in the last decades. Today, this growth is more and more limited by the weight of the structures and fatigue loads. To compensate these loads, especially flapwise root bending moments, trailing edge flaps can be used. They can change the lift of the blade with little delay to equalize the aerodynamic lift and by this reduce the fatigue amplitude. Such a trailing edge flap has been designed, developed, built and experimentally tested. It uses a flexible, morphing design to seal the entire mechanics against environmental influences, such as rain, dust, or insects. Therefore a design made from glass fiber reinforced plastics in combination with elastomer materials is used. In this paper the design process from the concept to two consecutive demonstrators is presented. Both are tested in the laboratory for their morphing characteristics.\",\"PeriodicalId\":51570,\"journal\":{\"name\":\"Wind Engineering\",\"volume\":\"15 1\",\"pages\":\"283 - 298\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/0309524X221126743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524X221126743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design and laboratory tests of flexible trailing edge demonstrators for wind turbine blades
To increase the power yield, wind turbines have significantly grown in the last decades. Today, this growth is more and more limited by the weight of the structures and fatigue loads. To compensate these loads, especially flapwise root bending moments, trailing edge flaps can be used. They can change the lift of the blade with little delay to equalize the aerodynamic lift and by this reduce the fatigue amplitude. Such a trailing edge flap has been designed, developed, built and experimentally tested. It uses a flexible, morphing design to seal the entire mechanics against environmental influences, such as rain, dust, or insects. Therefore a design made from glass fiber reinforced plastics in combination with elastomer materials is used. In this paper the design process from the concept to two consecutive demonstrators is presented. Both are tested in the laboratory for their morphing characteristics.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.