多孔Yb2O3倍半氧化物的催化性能

IF 1.3 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Advances in Applied Ceramics Pub Date : 2021-04-03 DOI:10.1080/17436753.2021.1919359
Alina Aftab, Katerina L. Chagoya, Alan Felix, R. Blair, N. Orlovskaya
{"title":"多孔Yb2O3倍半氧化物的催化性能","authors":"Alina Aftab, Katerina L. Chagoya, Alan Felix, R. Blair, N. Orlovskaya","doi":"10.1080/17436753.2021.1919359","DOIUrl":null,"url":null,"abstract":"ABSTRACT Porous Yb2O3 ceramic (55%) was pressureless sintered at 900°C for four hours in air. The crystal structure of Yb2O3 was confirmed to be cubic ( ) with c = 10.43731 Å by neutron diffraction. The spectral vibrational signature of Yb2O3 was also confirmed by micro-Raman spectroscopy. Yb2O3 is an amphoteric oxide with both acid and base character, which presents the potential for producing different hydrocarbons when used as a Fischer–Tropsch (FT) catalyst. It was found that Yb2O3 is indeed catalytically active and can be used to convert syngas (CO + H2) into useful hydrocarbons. Production of methane, ethene, and ethane was detected in the catalytic experiment performed at 500°C, but propane, propene, butane, and methanol were also detected in the experiment performed at 250°C. Hydrocarbons heavier than C4 were not observed. The limited data show deviation from a Flory–Schulz distribution suggesting additional surface processes are occurring beyond chain growth and termination.","PeriodicalId":7224,"journal":{"name":"Advances in Applied Ceramics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Catalytic performance of porous Yb2O3 sesquioxide\",\"authors\":\"Alina Aftab, Katerina L. Chagoya, Alan Felix, R. Blair, N. Orlovskaya\",\"doi\":\"10.1080/17436753.2021.1919359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Porous Yb2O3 ceramic (55%) was pressureless sintered at 900°C for four hours in air. The crystal structure of Yb2O3 was confirmed to be cubic ( ) with c = 10.43731 Å by neutron diffraction. The spectral vibrational signature of Yb2O3 was also confirmed by micro-Raman spectroscopy. Yb2O3 is an amphoteric oxide with both acid and base character, which presents the potential for producing different hydrocarbons when used as a Fischer–Tropsch (FT) catalyst. It was found that Yb2O3 is indeed catalytically active and can be used to convert syngas (CO + H2) into useful hydrocarbons. Production of methane, ethene, and ethane was detected in the catalytic experiment performed at 500°C, but propane, propene, butane, and methanol were also detected in the experiment performed at 250°C. Hydrocarbons heavier than C4 were not observed. The limited data show deviation from a Flory–Schulz distribution suggesting additional surface processes are occurring beyond chain growth and termination.\",\"PeriodicalId\":7224,\"journal\":{\"name\":\"Advances in Applied Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17436753.2021.1919359\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Ceramics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17436753.2021.1919359","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

将多孔Yb2O3陶瓷(55%)在900℃的空气中无压烧结4小时。通过中子衍射证实Yb2O3的晶体结构为立方(),c = 10.43731 Å。微拉曼光谱也证实了Yb2O3的光谱振动特征。Yb2O3是一种兼有酸碱性质的两性氧化物,当用作费托催化剂时,有可能产生不同的碳氢化合物。发现Yb2O3确实具有催化活性,可以将合成气(CO + H2)转化为有用的碳氢化合物。在500°C的催化实验中检测到甲烷、乙烯和乙烷的产生,但在250°C的实验中也检测到丙烷、丙烯、丁烷和甲醇。没有观察到比C4重的碳氢化合物。有限的数据显示与Flory-Schulz分布的偏差,表明在链生长和终止之外还发生了其他表面过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Catalytic performance of porous Yb2O3 sesquioxide
ABSTRACT Porous Yb2O3 ceramic (55%) was pressureless sintered at 900°C for four hours in air. The crystal structure of Yb2O3 was confirmed to be cubic ( ) with c = 10.43731 Å by neutron diffraction. The spectral vibrational signature of Yb2O3 was also confirmed by micro-Raman spectroscopy. Yb2O3 is an amphoteric oxide with both acid and base character, which presents the potential for producing different hydrocarbons when used as a Fischer–Tropsch (FT) catalyst. It was found that Yb2O3 is indeed catalytically active and can be used to convert syngas (CO + H2) into useful hydrocarbons. Production of methane, ethene, and ethane was detected in the catalytic experiment performed at 500°C, but propane, propene, butane, and methanol were also detected in the experiment performed at 250°C. Hydrocarbons heavier than C4 were not observed. The limited data show deviation from a Flory–Schulz distribution suggesting additional surface processes are occurring beyond chain growth and termination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Ceramics
Advances in Applied Ceramics 工程技术-材料科学:硅酸盐
CiteScore
4.40
自引率
4.50%
发文量
17
审稿时长
5.2 months
期刊介绍: Advances in Applied Ceramics: Structural, Functional and Bioceramics provides international coverage of high-quality research on functional ceramics, engineering ceramics and bioceramics.
期刊最新文献
Special Issue: ‘Advanced Ceramics and Coatings for Wear and Corrosion Applications’ Influences on the mechanical and physical properties of hot-press moulding alkali-activated slag (HP-FRAASC) composite with various fibers 3D-printed porous Al 2 O 3 membrane coated with hydrophilic modified titanium dioxide particles for large-flux oil/water separation Preparation of porous ceramsite from municipal sludge and its structure characteristics Gel-casting for manufacturing porous alumina ceramics with complex shapes for transpiration cooling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1