利用mean-shift进行有效的二维人体姿态估计

A. R. Khalid, Ali Hassan, M. Taj
{"title":"利用mean-shift进行有效的二维人体姿态估计","authors":"A. R. Khalid, Ali Hassan, M. Taj","doi":"10.1109/ICIP.2014.7025685","DOIUrl":null,"url":null,"abstract":"In 2D pose estimation, each limb is parametrized by it position(2D), scale(1D) and orientation(1D). One of the key bottlenecks is the exhaustive search in this 4D limb space where only a few maxima in the space are desired. To reduce the search space, we reformulate this problem in terms of finding the modes of a likelihood distribution and solve it using the Mean-Shift algorithm. Ours is the first paper in the pose estimation community to use such an approach. In addition, we describe a complete top-down approach that estimates limbs in a sequential pair-wise manner. This allows us to use Kinematic Constraints before processing, requiring us to perform search in only a small sub-region of the image for each limb. We finally devise a PCA based pose validation criteria that enables us to prune invalid hypotheses. Combining these search-space reduction techniques allows our method to generate results at par with the state-of-the-art, while saving more than 80% computations when compared to full image search.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"160 1","pages":"3387-3391"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Efficient 2D human pose estimation using mean-shift\",\"authors\":\"A. R. Khalid, Ali Hassan, M. Taj\",\"doi\":\"10.1109/ICIP.2014.7025685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2D pose estimation, each limb is parametrized by it position(2D), scale(1D) and orientation(1D). One of the key bottlenecks is the exhaustive search in this 4D limb space where only a few maxima in the space are desired. To reduce the search space, we reformulate this problem in terms of finding the modes of a likelihood distribution and solve it using the Mean-Shift algorithm. Ours is the first paper in the pose estimation community to use such an approach. In addition, we describe a complete top-down approach that estimates limbs in a sequential pair-wise manner. This allows us to use Kinematic Constraints before processing, requiring us to perform search in only a small sub-region of the image for each limb. We finally devise a PCA based pose validation criteria that enables us to prune invalid hypotheses. Combining these search-space reduction techniques allows our method to generate results at par with the state-of-the-art, while saving more than 80% computations when compared to full image search.\",\"PeriodicalId\":6856,\"journal\":{\"name\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"160 1\",\"pages\":\"3387-3391\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2014.7025685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在二维姿态估计中,每个肢体由其位置(2D)、尺度(1D)和方向(1D)进行参数化。其中一个关键的瓶颈是在这个四维分支空间中穷举搜索,在这个空间中只需要几个最大值。为了减少搜索空间,我们将这个问题重新表述为寻找似然分布的模式,并使用Mean-Shift算法来解决它。我们的论文是姿态估计领域使用这种方法的第一篇论文。此外,我们描述了一种完整的自上而下的方法,以顺序成对的方式估计肢体。这允许我们在处理之前使用运动学约束,要求我们只在图像的一小部分区域对每个肢体进行搜索。最后,我们设计了一个基于PCA的姿态验证标准,使我们能够修剪无效的假设。结合这些搜索空间缩减技术,我们的方法可以生成与最先进的结果相当的结果,同时与完整的图像搜索相比节省80%以上的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient 2D human pose estimation using mean-shift
In 2D pose estimation, each limb is parametrized by it position(2D), scale(1D) and orientation(1D). One of the key bottlenecks is the exhaustive search in this 4D limb space where only a few maxima in the space are desired. To reduce the search space, we reformulate this problem in terms of finding the modes of a likelihood distribution and solve it using the Mean-Shift algorithm. Ours is the first paper in the pose estimation community to use such an approach. In addition, we describe a complete top-down approach that estimates limbs in a sequential pair-wise manner. This allows us to use Kinematic Constraints before processing, requiring us to perform search in only a small sub-region of the image for each limb. We finally devise a PCA based pose validation criteria that enables us to prune invalid hypotheses. Combining these search-space reduction techniques allows our method to generate results at par with the state-of-the-art, while saving more than 80% computations when compared to full image search.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1