{"title":"神经元变异性建模中奇异摄动抛物型微分-差分方程的混合数值格式","authors":"Imiru Takele Daba, Gemechis File Duressa","doi":"10.1002/cmm4.1178","DOIUrl":null,"url":null,"abstract":"<p>This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an <math>\n <mrow>\n <mi>ε</mi>\n </mrow></math>-uniformly convergent accuracy of order <math>\n <mrow>\n <mi>O</mi>\n <mfenced>\n <mrow>\n <mi>Λ</mi>\n <mi>t</mi>\n <mo>+</mo>\n <msup>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n <msup>\n <mrow>\n <mi>ln</mi>\n </mrow>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>N</mi>\n </mrow>\n </mfenced>\n </mrow></math>. Two model examples are given to testify the theoretical findings.</p>","PeriodicalId":100308,"journal":{"name":"Computational and Mathematical Methods","volume":"3 5","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmm4.1178","citationCount":"7","resultStr":"{\"title\":\"A hybrid numerical scheme for singularly perturbed parabolic differential-difference equations arising in the modeling of neuronal variability\",\"authors\":\"Imiru Takele Daba, Gemechis File Duressa\",\"doi\":\"10.1002/cmm4.1178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an <math>\\n <mrow>\\n <mi>ε</mi>\\n </mrow></math>-uniformly convergent accuracy of order <math>\\n <mrow>\\n <mi>O</mi>\\n <mfenced>\\n <mrow>\\n <mi>Λ</mi>\\n <mi>t</mi>\\n <mo>+</mo>\\n <msup>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n <msup>\\n <mrow>\\n <mi>ln</mi>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n </mrow>\\n </msup>\\n <mi>N</mi>\\n </mrow>\\n </mfenced>\\n </mrow></math>. Two model examples are given to testify the theoretical findings.</p>\",\"PeriodicalId\":100308,\"journal\":{\"name\":\"Computational and Mathematical Methods\",\"volume\":\"3 5\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmm4.1178\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Methods","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmm4.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7
摘要
本研究的目的是建立一个鲁棒的数值格式来解决奇异摄动抛物型延迟微分方程在神经元变异性建模中出现。泰勒级数展开式应用于移位项的近似。在时间离散上采用均匀步长隐式欧拉法,在空间离散上采用分段均匀Shishkin网格,在外层区域采用中点迎风法,在内层区域采用张力三次样条法混合数值格式进行近似。构造的格式具有O阶ε -一致收敛精度Λ t + N−2ln 3n。给出了两个模型实例来验证理论结果。
A hybrid numerical scheme for singularly perturbed parabolic differential-difference equations arising in the modeling of neuronal variability
This study aims at constructing a robust numerical scheme for solving singularly perturbed parabolic delay differential equations arising in the modeling of neuronal variability. Taylor's series expansion is applied to approximate the shift terms. The obtained result is approximated by using the implicit Euler method in the temporal discretization on a uniform step size with the hybrid numerical scheme consisting of the midpoint upwind method in the outer layer region and the cubic spline in tension method in the inner layer region on a piecewise uniform Shishkin mesh in the spatial discretization. The constructed scheme is shown to be an -uniformly convergent accuracy of order . Two model examples are given to testify the theoretical findings.