开发了从各种资源中分离铕的工艺

A. Kumari, M. Jha, D. Pathak, S. Chakravarty, Jae-chun Lee
{"title":"开发了从各种资源中分离铕的工艺","authors":"A. Kumari, M. Jha, D. Pathak, S. Chakravarty, Jae-chun Lee","doi":"10.1080/15422119.2018.1454959","DOIUrl":null,"url":null,"abstract":"Europium (Eu), one of the most significant rare earth (RE) elements, has wide applications as functional material in phosphor production, majorly used in fluorescent lamps, computer monitors, televisions etc. Eu is one of the three divalent lanthanides (along with Yb and Sm) having a reduction potential higher than −2 V. This possibility of Eu reduction is attributed to a relatively stable half-filled 4f7 electronic configuration, thus providing a high stabilization energy and selective recovery. But the Eu recuperation from natural minerals is either accompanied with other REs or Eu is recovered as a group of light REs. Selective recovery of Eu has sparked the progress for its reutilization through recycling of secondary resources. The perspectives of reclaiming Eu as a value added product from various sources using different pyro-hydro or hybrid techniques are discussed. The systematic research and salient findings on methods, viz., reduction, leaching, solvent extraction, as well as combined methods scaled-up to commercial scale to recover Eu, are also reported with recommendations. Thus, this comparative as well as summarized review hopes to help researchers to develop feasible processes for Eu recovery.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Processes developed for the separation of europium (Eu) from various resources\",\"authors\":\"A. Kumari, M. Jha, D. Pathak, S. Chakravarty, Jae-chun Lee\",\"doi\":\"10.1080/15422119.2018.1454959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Europium (Eu), one of the most significant rare earth (RE) elements, has wide applications as functional material in phosphor production, majorly used in fluorescent lamps, computer monitors, televisions etc. Eu is one of the three divalent lanthanides (along with Yb and Sm) having a reduction potential higher than −2 V. This possibility of Eu reduction is attributed to a relatively stable half-filled 4f7 electronic configuration, thus providing a high stabilization energy and selective recovery. But the Eu recuperation from natural minerals is either accompanied with other REs or Eu is recovered as a group of light REs. Selective recovery of Eu has sparked the progress for its reutilization through recycling of secondary resources. The perspectives of reclaiming Eu as a value added product from various sources using different pyro-hydro or hybrid techniques are discussed. The systematic research and salient findings on methods, viz., reduction, leaching, solvent extraction, as well as combined methods scaled-up to commercial scale to recover Eu, are also reported with recommendations. Thus, this comparative as well as summarized review hopes to help researchers to develop feasible processes for Eu recovery.\",\"PeriodicalId\":21744,\"journal\":{\"name\":\"Separation & Purification Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation & Purification Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15422119.2018.1454959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2018.1454959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

铕(Eu)是最重要的稀土元素之一,作为功能材料在荧光粉生产中有着广泛的应用,主要用于荧光灯、电脑显示器、电视机等。Eu是三种二价镧系元素之一(另外两种是Yb和Sm),还原电位高于- 2v。这种Eu还原的可能性归因于相对稳定的半填充4f7电子结构,从而提供了高稳定能量和选择性恢复。但从天然矿物中回收Eu或与其他REs一起回收,或作为一组轻REs回收。Eu的选择性回收引发了其通过二次资源循环利用的进展。讨论了利用不同的热-氢或混合技术从各种来源回收Eu作为增值产品的前景。报告了还原法、浸出法、溶剂萃取法以及扩大到商业规模的综合回收方法的系统研究和突出发现,并提出了建议。因此,这一比较和总结综述希望能帮助研究人员制定可行的欧盟回收流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Processes developed for the separation of europium (Eu) from various resources
Europium (Eu), one of the most significant rare earth (RE) elements, has wide applications as functional material in phosphor production, majorly used in fluorescent lamps, computer monitors, televisions etc. Eu is one of the three divalent lanthanides (along with Yb and Sm) having a reduction potential higher than −2 V. This possibility of Eu reduction is attributed to a relatively stable half-filled 4f7 electronic configuration, thus providing a high stabilization energy and selective recovery. But the Eu recuperation from natural minerals is either accompanied with other REs or Eu is recovered as a group of light REs. Selective recovery of Eu has sparked the progress for its reutilization through recycling of secondary resources. The perspectives of reclaiming Eu as a value added product from various sources using different pyro-hydro or hybrid techniques are discussed. The systematic research and salient findings on methods, viz., reduction, leaching, solvent extraction, as well as combined methods scaled-up to commercial scale to recover Eu, are also reported with recommendations. Thus, this comparative as well as summarized review hopes to help researchers to develop feasible processes for Eu recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Latest Development of Matrix Solid Phase Dispersion Extraction and Microextraction for Natural Products from 2015-2021 Recent Advances in the Chemistry of Hydrometallurgical Methods Separation of Plutonium from Other Actinides and Fission Products in Ionic Liquid Medium Fixed Bed Adsorption of Water Contaminants: A Cautionary Guide to Simple Analytical Models and Modeling Misconceptions Application of Aqueous Biphasic Systems Extraction in Various Biomolecules Separation and Purification: Advancements Brought by Quaternary Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1