{"title":"多个相关放射性碳测定的非参数校准及其日历年龄汇总","authors":"Timothy J. Heaton","doi":"10.1111/rssc.12599","DOIUrl":null,"url":null,"abstract":"<p>Due to fluctuations in past radiocarbon (<math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C) levels, calibration is required to convert <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determinations <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {X}_i $$</annotation>\n </semantics></math> into calendar ages <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>θ</mi>\n </mrow>\n <mrow>\n <mi>i</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {\\theta}_i $$</annotation>\n </semantics></math>. In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math>. Calibration of <math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mi>…</mi>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>X</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {X}_1,\\dots, {X}_n $$</annotation>\n </semantics></math> can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math> can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for <math>\n <semantics>\n <mrow>\n <mi>f</mi>\n <mo>(</mo>\n <mi>θ</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$$ f\\left(\\theta \\right) $$</annotation>\n </semantics></math> which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C calibration. Our approach simultaneously calibrates the set of <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each <math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mrow>\n <mn>14</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {}^{14} $$</annotation>\n </semantics></math>C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12599","citationCount":"1","resultStr":"{\"title\":\"Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation\",\"authors\":\"Timothy J. Heaton\",\"doi\":\"10.1111/rssc.12599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to fluctuations in past radiocarbon (<math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C) levels, calibration is required to convert <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determinations <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {X}_i $$</annotation>\\n </semantics></math> into calendar ages <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>θ</mi>\\n </mrow>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {\\\\theta}_i $$</annotation>\\n </semantics></math>. In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math>. Calibration of <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mi>…</mi>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>X</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {X}_1,\\\\dots, {X}_n $$</annotation>\\n </semantics></math> can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math> can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for <math>\\n <semantics>\\n <mrow>\\n <mi>f</mi>\\n <mo>(</mo>\\n <mi>θ</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$$ f\\\\left(\\\\theta \\\\right) $$</annotation>\\n </semantics></math> which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C calibration. Our approach simultaneously calibrates the set of <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each <math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow></mrow>\\n <mrow>\\n <mn>14</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {}^{14} $$</annotation>\\n </semantics></math>C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/rssc.12599\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12599\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/rssc.12599","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Non-parametric calibration of multiple related radiocarbon determinations and their calendar age summarisation
Due to fluctuations in past radiocarbon (C) levels, calibration is required to convert C determinations into calendar ages . In many studies, we wish to calibrate a set of related samples taken from the same site or context, which have calendar ages drawn from the same shared, but unknown, density . Calibration of can be improved significantly by incorporating the knowledge that the samples are related. Furthermore, summary estimates of the underlying shared can provide valuable information on changes in population size/activity over time. Most current approaches require a parametric specification for which is often not appropriate. We develop a rigorous non-parametric Bayesian approach using a Dirichlet process mixture model, with slice sampling to address the multi-modality typical within C calibration. Our approach simultaneously calibrates the set of C determinations and provides a predictive estimate for the underlying calendar age of a future sample. We show, in a simulation study, the improvement in calendar age estimation when jointly calibrating related samples using our approach, compared with calibration of each C determination independently. We also illustrate the use of the predictive calendar age estimate to provide insight on activity levels over time using three real-life case studies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.